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One important aim of synthetic biology is to develop a self-replicating
biological system capable of performing useful tasks. A mathematical model
of a synthetic organism would greatly enhance its value by providing a
platform in which proposed modifications to the system could be rapidly
prototyped and tested. Such a platform would allow the explicit connection
of genomic sequence information to physiological predictions. As an initial
step toward this aim, a Minimal Cell Model (MCM) has been formulated. The
MCM is defined as a model of a hypothetical cell with the minimum number
of genes necessary to grow and divide in an optimally supportive culture
environment. It is chemically detailed in terms of genes and gene products, as
well as physiologically complete in terms of bacterial cell processes like DNA
replication and cell division.

A mathematical framework originally developed for modeling Escherichia
coli has been used to build the platform MCM. To lay the foundation for
designing an MCM, sensitivity analysis and event detection methods applicable
to the E. coli model are presented. An updated version of the E. coli model
that links detailed genomic information about the location of dnaA genes and
DnaA binding sites on the chromosome to physiological predictions has been
developed. The model suggests that the concentration of DnaA binding boxes

on the chromosome is critical to determining cell growth and behavior. This



update is the first example of including detailed genomic information in a
hybrid bacterial cell model, which was an important step toward the massive
inclusion of new genes in the MCM.

An MCM with 241 product-coding genes (those which produce protein
or stable RNA products) is presented. This set is genomically complete and
codes for all the functions that a minimal chemoheterotrophic bacterium would
require for sustained growth and division. It is shown for the first time that it
is possible to test the hypotheses behind a minimal gene set using a chemically
detailed, dynamic, whole-cell modeling approach. It has been demonstrated
that it is possible to simulate a whole-cell whose behavior depends on its
(i) metabolic rates and chemical state, (ii) genome in terms of expression of
various genes, (iii) environment both in terms of direct nutrient starvation
and competitive inhibition leading to starvation, and (iv) genomic sequence
in terms of the locations of genes on the chromosome. All of these behaviors
are exhibited by a single-cell model that makes reasonable assumptions about
cellular biochemistry, reaction rates, gene expression, and the effect of discrete

physiological events on the cell’s behavior.
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CHAPTER 1
GENOMICALLY DETAILED MODELS OF BACTERIAL CELLS

1.1 Introduction

“What is essential for life?” is one of the most fundamental questions
we face. The complete reconstruction of a minimal cell in silico is
key to fully understanding and identifying the underlying regulatory and
organizational concepts central to life. Whole organism genome sequencing and
high-throughput measurements provide opportunities for system-level analysis
of whole organisms, or what has been termed “systems biology” (Ideker
et al., 2001; Kitano, 2002). Systems biology investigates the behavior of all
of the elements in a biological system while it is functioning (Ideker et al,,
2001), which can help answer questions of essentiality for organisms. As a
systems biology approach, the Minimal Cell Model (MCM) depicts the total
functionality of a minimal cell and its explicit response to perturbations in the

environment (Browning and Shuler, 2001).

A minimal cell is a hypothetical entity defined by the essential functions
required for life (Castellanos et al., 2004). It is assumed that this cell exists in an
environment with preformed nutrients, constant temperature, and constant pH.
Although other research groups have the goal of experimentally constructing
a minimal cell (Zimmer, 2003; Forster and Church, 2006, 2007; Lartigue et al.,
2009), we seek to construct a dynamic model of such a cell. The model can
be used as a tool to identify the organizing principles that relate the dynamic

nonlinear functioning of the cell to the genome sequence.



The overall accomplishments of this research project build on a single-cell
modeling approach pioneered in the late 1970s (Shuler and Dick, 1979; Domach,
1983; Shuler, 2005). The two main foci of this dissertation are (i) to develop more
powerful and flexible computational techniques for analysis of coarse-grained
bacterial cell models, and (ii) to develop a model of a hypothetical bacterium
with the minimum number of genes necessary and sufficient to support

sustained division, i.e. an MCM.

The long term impact of this work will make the MCM available to a
wide audience. The model is available in the Systems Biology Markup
Language (SBML) (Hucka et al., 2003, 2008) with model a simulator available in
Python (Gutenkunst et al., 2007). Disseminating the model in this manner will
provide practical guidance to researchers involved in bioprocesses, metabolic
engineering, and interpretation of genomic information, especially in regard to

techniques to construct “hybrid” models of real bacteria.

Sections 1.2-1.5 in Chapter 1 describe previous work done on the Cornell
E. coli model, as well as the previous iterations of the MCM. The minimal
gene set concept is introduced, and previous proposals for minimal gene sets
are explained. A preview of the remainder of this dissertation is presented in

Section 1.6.

1.2 Motivation

This research seeks to elucidate the common, essential features of a living
cell (with a focus on chemoheterotrophic bacteria). In particular, a platform

that allows investigators to unambiguously link genomic structure to cell



physiology is sought. =~ A mathematical model of a “minimal cell” was
constructed to provide a basis to better understand the design logic of cellular
regulation (see Section 1.4 for a discussion of minimal cells). Although others
have the goal of experimentally constructing a minimal cell (Zimmer, 2003;
Forster and Church, 2006, 2007; Lartigue et al., 2009), this project aims to identify
a minimal gene set and create a dynamic model of a bacterial cell that contains
just those genes. Current estimates dictate that a minimal cell will have on the
order of 200 to 300 genes and that all of these genes will have known functions.
Most bacteria that exist in nature have on the order of 1,000 to 5,000 genes
(e.g. E. coli has about 4,400 genes), and many of the products of these genes
have unknown functions. Consequently a genomically detailed model of a
real bacterium is neither practical (because it would be too large), nor desirable
(because it would yield limited insight for the operation of genes with unknown
functions). An MCM with a completely defined genome provides a platform
to test, unambiguously, questions about how real whole cells must regulate

themselves as well as a framework to model existing cells.

While the specific goal of this research is an MCM, the practical impact
is broader. The minimal cell is a “learning model” used to probe the
essence of a generalized cell response. The MCM and the techniques
developed to produce such a model provide an essential foundation for
“hybrid models” of bacterial cells. These models will use a “coarse-grained”
overall model in which one embeds one or more genomically/molecularly
detailed submodels (Shuler, 2005). The hybrid modeling strategy couples
molecular details with a coarse-grained description of cellular processes and the
extracellular environment. At the same time, this coupling can be linked to the

chemical and genomic detail present in an MCM. All of the elements to form



a hybrid model (coarse-grained general structure, rapid estimation of kinetic
parameters, and molecularly detailed modules of subsystems) are necessary
to form the MCM. It provides a platform from which powerful mathematical
techniques can be used both to determine criteria for robustness, and to rapidly

prototype models of real cells.

Other broad impacts of this project include a greater insight into what is
essential for life, which is a question of broad interest to both scientists and the
lay public, as well as practical guidance to researchers involved in bioprocesses,
metabolic engineering, and the interpretation of genomic information. Finally,
there is a strong interest in using in silico models to connect bacterial genomic
sequence information to physiological predictions. Specifically, biologists
would like to be able to understand how changes to the genome sequence of an
organism will affect its phenotypic behavior without necessarily making those
genomic modifications in vivo or in vitro. Developing this understanding has

practical implications in systems biology.

The MCM also has potential applications in synthetic biology. Foley and

Shuler (2010) list five essential characteristics of a biological synthetic cell:

1. Robust mechanisms to control and correlate chromosome replication and

cell division

2. Physically robust structure (e.g., cell envelope that allows high-density,

large-scale culture without inducing cell lysis)
3. Decreased genetic drift (reduced mutation rates)

4. Simple and efficient transcription, translation, and regulatory systems to

optimize flow of metabolic energy/resources to the design function



5. Mathematically defined interactions and predictable kinetics of the system

The fifth characteristic is the most important for this dissertation. A system
with predictable kinetics would facilitate modeling, and having a chemically
detailed model of a synthetic organism would allow an experimenter to test
proposed modifications to the system and identify potential bottlenecks in
production. The Shuler group has a long history of modeling bacterial cells to
test modifications like these (Shuler and Dick, 1979; Domach and Shuler, 1984;
Browning and Shuler, 2001; Castellanos et al., 2004; Atlas et al., 2008).

Another benefit of the proposed model is that it could lead to a better
understanding of the behavior of real chemoheterotrophic bacteria, as well as
more effective models of real bacteria. While an MCM suggests the essential
components of regulation, deeper insight into the logic of cell regulation
can also be achieved by introducing perturbations to the system where large
changes can lead to failures in the model (i.e. cell death) and regulatory
approaches could be found to counteract these changes (i.e. allow survival).
As such, insight into cellular structure and regulation gained from the MCM
become important for the metabolic engineering of cells and for the design of

improved bioprocess strategies.

Finally, an MCM can be used as a platform to evaluate candidate minimal
gene sets. There are several methods in popular use for estimating the core
genes necessary for bacterial life, but there is currently no widely accepted
method for testing the plausibility of those gene sets. Until synthetic biology
offers a method to rapidly create a bacterium with a synthetic minimal genome
on the lab bench, a simulation of a minimal cell is the best way to verify a

particular gene set’s viability.



1.3 Computer Models of Bacterial Cells

The MCM is built using a coarse-grained bacterial framework, which is
one of several modeling strategies available to computational biologists and
applied mathematicians studying whole bacterial cells. Using modeling,
many investigators have made significant contributions to our understanding
of bacterial metabolism. Some studies take advantage of detailed genomic
information (Karp et al.,, 2004), while other models are based primarily on
flux balance analysis, metabolic control theory, and mathematical techniques
for optimization (Burgard et al., 2001; Burgard and Maranas, 2001; Edwards
and Palsson, 2000; Edwards et al., 2002; Durot et al., 2009). These modeling
techniques are all intrinsically static, and they have limited ability to predict
aspects of cell regulation and dynamic response. Other investigators have
proposed methods to directly incorporate dynamic (kinetic) information into
models of central metabolism (Chassagnole et al., 2002). Moreover, while some
have attempted to model whole cells (Tomita et al., 1999; Tomita, 2001), those
models neglect important, non-metabolic aspects of cell growth (e.g. control
of chromosome replication or cell division) because there is no formalism to

handle such “events” in the context of a cell model.

Constraint-based models, including flux-balance analysis, have a large
representation in the literature. Under the time scale of minutes, metabolite
concentrations in cells are generally at steady levels and remain constant as
long as environmental conditions do not change. Therefore, a modeler can use
the law of conservation of mass to constrain the synthesis and consumption
rates of those metabolites. This is expressed as a stoichiometric constraint based

on the stoichiometric relation proposed by each reaction in the system under



study (Durot et al., 2009). For each metabolite, the mass balance constraint is
written mathematically as )  s;u; = 0, where s; is the stoichiometric coefficient
of the metabolite in reaction j, and v, is reaction rate j. The stoichiometric
constraints are supplemented with constraints regarding reaction reversibility
and maximum reaction rate. The construction and applications of these models
are reviewed in Durot et al. (2009), and there are several interesting applications
available (Burgard and Maranas, 2001; Burgard et al.,, 2001; Edwards and
Palsson, 2000; Edwards et al., 2002).

These studies, and many other similar ones, make important contributions
toward our perception of systems biology. However, all of these approaches
neglect the coupling between cell physiology and cell growth that is prevalent
in physiological events such as chromosome replication. Descriptions that
neglect this coupling may lead to conclusions that are inaccurate because they
implicitly assume that the output of each pathway cannot influence any input
into the same pathway (Schlosser and Bailey, 1990). Further, many of the models
referenced above assume an objective function, which typically maximizes the
growth rate. While such a function can be justified in the context of a specific
short-term situation, the real objective function (e.g. survival of the organism)
is more complex and involves issues such as the ability to grow robustly and in

a variety of environmental conditions.

The Shuler group has previously developed a whole-cell model of E. coli
that contains all of the functional elements for the cell to grow, divide, and
respond to a wide variety of environmental perturbations. All chemical species
are included, but lumped into pseudochemical groups. This “coarse-grained”

model serves as the basis for our efforts to build an MCM. The Shuler group



first described a mathematical model of a single E. coli cell in 1979 (Shuler
and Dick, 1979). While the E. coli model summarizes the physiological
functionality required for a minimal cell, it does not capture explicitly the
physical chemistry that supports those functions. It is unique in its natural
coupling of metabolism, transport, and cellular events. At that time, it
was the only model of an individual cell that did not dictate timing of cell
division (e.g. growth rate) and cell size; instead, those aspects were outputs
of the simulation. Also, it responded explicitly to concentrations of nutrients
in the environment (Bailey, 1998). This base model (Domach, 1983) has
been embellished with additional biological details to allow prediction of a
wide-range of responses to environmental and genetic manipulations (Shuler,
1999). The initial model included only 18 pseudochemical species that
represented large groups of related chemical species. Figure 1.1 lists the

components of the E. coli model and graphically depicts their relationships.

The mathematical description of cellular functions that comprise the model
is based on time-variant mass balances for each component. Each mass balance
takes into account the component’s synthesis (as a function of availability
of precursors, energy, and relevant enzymes), utilization, and degradation.
Stoichiometric coefficients for relating components through mass balances
were derived primarily from published research, and in some cases, from
experimental data. It is important to note that the model was not developed
by using adjustable parameters to fit model predictions to experimental results,
nor did the stoichiometric mass balances assume a steady-state (i.e. the
amount of each component was allowed to vary with time). Despite the
simplifications that were made in describing the cell, the model accurately

predicts changes in cell composition, size, and shape, as well as the timing
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Figure 1.1: A schematic representation of the Single Cell Model and the
modular approach to cell modeling. Grey boxes indicate
chemically detailed modules that have been implemented, such
as nucleotide metabolism (Castellanos et al., 2004) and lipid
metabolism (Castellanos et al., 2007). The blue box illustrates an
example of a potential new carbon metabolism module. Solid and
dashed lines represent mass and information flows, respectively.
‘Catabolic load” refers to glucose spent for energy metabolism,
and ‘Crosswall’ refers to lipids spent for septum formation during
cell division. Not all reactions and regulation information are
depicted. PPP, ED, and TCA are the Pentose Phosphate Pathway,
the Entner-Doudoroff Pathway, and the TCA Cycle. The labels
in pathways represent lumped pseudo-species defined as: A; -
ammonium ion, A, - glucose, P; - amino acids, P, - ribonucleotides,
P; - deoxyribonucleotides, P, - membrane precursors, M, - protein,
Msrtr = immature stable RNA, Mortyv - mature stable RNA, M; -
DNA, My - cell envelope, M; - glycogen, PG - ppGpp, E; - enzymes
for conversion of P, to P3, E; and E; - enzymes for cross-wall
formation and cell envelope synthesis. * indicates species that are
external to the cell (Domach et al., 1984).



of chromosome synthesis as a function of changes in external glucose and
ammonium concentration (Domach et al., 1984; Lee et al., 1984; Shuler and
Domach, 1983). The model also addresses important issues such as energy
generation and the maintenance of the electropotential and chemical potential
gradients across the cytosolic membrane by including a description of the
cell’s energy accounting process and the movement of H ions (leaky protons)
along the membrane (Shuler and Dick, 1979; Lee et al.,, 1984; Shuler and
Domach, 1983). Two examples of stoichiometric mass balances for formation
of precursors (amino acid) and macromolecules (RNA) are given in Equations

1.1 and 1.2.

011A1+52A2+...%P1+... (11)

’)/2P2=>M2+... (12)

In Equations 1.1 and 1.2, a3, 1, and v, are stoichiometric coefficients, and A4,
Ay, P, P,, and M, are the masses of ammonium ion, glucose, amino acids,
ribonucleotides, and total RNA, respectively. Chemical concentrations are
measured in mass per cell, and stoichiometric balances are based on carbon and
nitrogen. Equation 1.3 shows the corresponding requirements for phosphate

energy coupled with the biosynthetic reactions.

oprATP — 0p1(ADP + Pi) (1.3)

In Equation 1.3, dp; is a stoichiometric coefficient representing the average

amount of ATP hydrolysis that must occur to supply the energy required for
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synthesis of a specific amount of amino acids (P;) per cell. Also the amount of

reducing power formed and utilized is included in the accounting system.

The change in mass of a substance per cell per unit time can be found
from a dynamic mass balance accounting for synthesis, import, export, and
consumption. Note that this is not the same as concentration because the
cell volume is changing. Equation 1.4 is an example mass balance for

deoxyribonucleotides.

apy _ Kps = o o M3\ 1,
-, — h3° P P, Ag : 1 ’}/3 T ( . )
dt Kps + 7 Kpsp2 + Ve Kp3az + 7 dt

where k3 is the maximum rate of synthesis for deoxyribonucleotides formation

(time™'), Kps, Kpsps, and Kpsso are saturation constants (=), 3 is a

stoichiometric coefficient, and F; is the mass of enzyme E1 per cell (the rate
limiting enzyme for conversion of ribonucleotides into deoxyribonucleotides).
In Equation 1.4, the first term in brackets on the right hand side shows
dependency based on deoxyribonucleotide concentration (P;/Ve where Vi
is cytosolic cell volume), the second term represents feedback inhibition of
synthesis by ribonucleotide concentration (P,/V), the third term indicates
saturation-type dependence on glucose primarily for ability to supply energy

(A2/Ve), and the last term represents consumption to form DNA (Ms).

The original model explicitly describes discrete events that are typically
ignored in other models (Nikolaev et al., 2006). For example, changes in gene
dosage (the number of copies of a gene in a cell at a given time) depend on the
replication fork position, and the completeness of cross-wall formation depends

on the cell size and amount of cell membrane components synthesized. Other
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biochemical details have been added in subsequent studies. For example, in one
study, amino acids are differentiated into five families (Shu and Shuler, 1991)
and the synthesis of ribosomes has been incorporated in greater detail (Laffend
and Shuler, 1994a). These expansions allowed the study of the effects of
amino acid supplementation (Shu and Shuler, 1991) and of competition between
recombinant mRNA and ribosomal mRNA in the context of high translational
activity (Laffend and Shuler, 1994a). The model was utilized extensively to
improve the use of plasmids for recombinant protein production, e.g. (Laffend
and Shuler, 1994a; Kim et al., 1987; Kim and Shuler, 1990, 1991; Laffend and
Shuler, 1994b). The calculations have proved to be quite robust and results
are reproducible. Bailey reviewed the importance of these contributions to the

whole field of mathematical modeling in biochemical engineering (Bailey, 1998).

1.4 Minimal Cells

Before the current effort to construct an MCM is discussed, the minimal cell
must be defined. The minimal cell concept can be traced back to the 1950s
when Harold Morowitz and colleagues began to seek the smallest, autonomous,
self-replicating entity (Morowitz, 1984). Because the genetic material of an
organism defines its characteristics, what most succinctly defines a minimal
cell is the makeup of its chromosome. Based on Morowitz’s original concept,
a minimal cell is defined as one possessing a minimal gene set, or a minimally
sized list of genes that are both necessary and sufficient to promote sustained
growth and division of a bacterial cell in some optimally supportive culture

environment.
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Various comparative genomic, genetic, and biochemical approaches have
been used to estimate hypothetical minimal gene sets. Establishing a minimal
gene set, or minimal gene sets, is an important step in synthetic biology. To
prepare for incorporating a minimal gene set into an MCM, synthetic, natural,
and experimental approaches to defining which genes belong in a minimal cell
are considered. However, a reductionist approach that only considers each gene
in the minimal gene set independently will be insufficient. It is necessary to

evaluate how these cell systems functionally integrate (Moya et al., 2009).

1.4.1 Synthesis of Minimal Cells

One key focus of synthetic biology is the de novo construction of cells capable
of performing important tasks like producing therapeutics or decontaminating
waste streams (Foley and Shuler, 2010). There are bottom-up and top-down
approaches to this goal. Bottom-up approaches attempt to synthesize a “living”
cell that can reproduce, maintain homeostasis, and evolve without assuming
the physiology of modern cells (Luisi et al.,, 2006). Alternatively, top-down
approaches use modem cellular physiology as a starting point in the design of

a synthetic cell (Forster and Church, 2006).

The J. Craig Venter Institute has been actively pursuing the goal of
synthesizing a cell using a top-down approach. Toward this end, they
successfully transplanted a complete Mycoplasma mycoides chromosome into
a Mycoplasma capricolum cell which had its own genome removed (Lartigue
et al., 2007). They also constructed a synthetic Mycoplasma genitalium genome

de novo (Gibson et al., 2008). Finally, they took the entire genome from M.
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mycoides, modified it in yeast using yeast genetic systems, and then transplanted
the modified chromosome into M. capricolum (Lartigue et al., 2009). Together,
these techniques put them very close to their ultimate goal of taking a wholly
synthetic chromosome and using that as the starting genetic information for a
new cell line. The only remaining steps are to clone a synthetic genome in yeast

and then use that clone as the basis for a synthetic bacterium.

Although the Venter Institute is developing the technical procedures
necessary for synthetic cell construction, another important step toward
synthesizing a minimal cell is defining precisely what is in its genome.
Furthermore, there are no examples of an experimental test of whether a
proposed gene set is sufficient for driving cellular life. The first method used to
consider which genes were both necessary and sufficient to drive life involved

studying naturally occurring bacteria with minimized genomes (Morowitz,

1984).

1.4.2 Natural Examples of Minimized Gene Sets

There are some natural analogs of the hypothetical minimal cell that have
evolutionarily reduced genome sizes. All known small-genome bacteria are
associated with specialized lifestyles in stable environments, e.g., obligate
symbiosis or specialized ecological niches (Moya et al., 2009). The two largest
forces pushing a bacterial species toward genome reduction are symbiosis
and resource economization, so it is not surprising that the smallest genomes
in nature are all in prokaryotes living in symbiosis with other cells (Moya

et al.,, 2009). Notable examples include: Nanoarchaeum equitans, a symbiotic
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archaeon with a 490 kbp genome, or 536 protein-coding genes (Waters et al.,
2003); Buchnera aphidicola, an endosymbiont of aphids with a 540 kbp genome,
or 480 genes (Gil et al., 2002); and Pachypsylla venusta, an endosymbiont of
hackberries with a 160 kbp genome, or 182 predicted ORFs (Nakabachi et al.,
2006). Because it can be grown in pure cultures and has an extremely small
genome size (580 kbp, 470 genes), Mycoplasma genitalium is considered the best
living example of a minimal cell (Fraser et al., 1995); its genome represents a
significant reduction from that of other well-studied bacteria such as E. col,
which has a 4,400 kbp genome. The M. genitalium genome developed through
“top down” genomics, where genes are removed from an existing organism
to provide a metabolically simpler cell (Maniloff, 1996). Thus, it exemplifies

natural selection for a minimized genome.

As evidenced above, evolution (a “bottom up” approach) has suggested
many forms of a minimal cell (Maniloff, 1996), but all of them can survive
knockout experiments and are therefore not truly minimal. Estimates based
on observation of naturally occurring bacteria suggest minimal gene sets in the
range of 200-500 genes (Mushegian and Koonin, 1996; Hutchison et al., 1999;
Koonin, 2000; Kobayashi et al., 2003; Gil et al., 2004; Glass et al., 2006). It
has been proposed that a synthetic biology approach that takes advantage of
enzymes with low substrate-specificity could drive the minimal gene set down
to 100 or fewer genes (Murtas, 2007), but no minimal gene sets in that size range

have been published.
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1.4.3 Experimental Estimates of Minimal Gene Sets

There are genetic (Hutchison et al., 1999; Glass et al.,, 2006), comparative
genomic (Tomita et al.,, 1999; Mushegian and Koonin, 1996; Koonin, 2000,
2003), and biochemical (Forster and Church, 2006; Luisi, 2002) approaches
to establishing an in vivo minimal cell (Forster and Church, 2006). Taken
together, these techniques go beyond naturally occurring minimization to

propose minimal gene sets in the range of 200-400 genes.

Genetic approaches identify essential genes by large-scale gene disruption.
Kobayashi et al. (2003) estimated 271 genes as the minimal gene set by
systematically inactivating single genes in Bacillus subtilis using transposon
mutagenesis experiments. Similar genetic methods have been used to estimate
1,490 essential genes in Mycobacterium tuberculosis (Lamichhane et al., 2003),
254 essential genes in B. subtilis (Itaya, 1995), and 382 essential genes in
M. genitalium (Hutchison et al., 1999; Glass et al., 2006). Other efforts to
determine gene essentiality using gene inactivation include (Forsyth et al., 2002)
and (Gerdes et al., 2003). However, this experimental approach can lead to
falsely labeling required genes as dispensable, which can derail any effort to
create a minimal gene set (Forster and Church, 2006; Peterson and Fraser, 2001).
Additionally a genetic approach can overestimate the minimal set substantially
because genome scale knockouts could identify genes as essential even when

the deletion only slows growth (Koonin, 2003).

In addition to estimates for a minimal gene set made using genetic
techniques, estimates have been made using comparative genomics. Mushegian
and Koonin estimated a set of about 250 genes as a minimal gene set

after comparing the full genome sequences of Haemophilus influenzae and M.
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genitalium (Mushegian and Koonin, 1996). In 2000, Koonin reviewed advances
since their 1996 paper (Mushegian and Koonin, 1996) that demonstrate the
complexity in using comparative genomics to establish a minimum gene
set (Koonin, 2000). For example, of the 256 genes identified as essential in 1996,
15% were found to be dispensable in knockout experiments (Koonin, 2000).
Many other computational analyses like these have been performed (Tomita
et al.,, 1999; Nesb et al.,, 2001; Harris et al., 2003; Gil et al., 2003; P4l et al.,
2006; Gabaldoén et al., 2007; Carbone, 2006). However, comparative genomic
approaches could yield either an over- or underestimation of minimal gene
sets (Forster and Church, 2006). They are particularly prone to missing
unrelated proteins with the same activity, or nonorthologous gene displacement
(NOGD). Therefore, it is critical to develop a methodology for distinguishing

among proposed minimal gene sets.

There have also been parallel efforts to determine the minimal set of cellular
reactions or functions. Forster and Church described the main biochemical
pathways that are necessary for essential bacterial functions, as well as an in
vitro plan to synthesize a minimal cell (Forster and Church, 2006, 2007). They
obtained a minimal genome with 151 genes for cellular information processing
but omitted genes involved in major metabolic pathways (Forster and Church,
2006). Azuma and Ota (2009) determined the “minimal pathway maps”, or the
minimal set of autonomous pathways maps that could synthesize all required
biomass components, for E. coli and B. subtilis. They found that pathways maps
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) were more likely
to be conserved if they were involved in cellular information processing. This
approach, while still computational, avoids the possibility of NOGD because a

cellular function can be accepted into the minimal set regardless of NOGD.
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The various approaches to determine a minimal gene set have been compiled
and summarized in literature reviews (Gil et al., 2004; Forster and Church, 2006;
Moya et al., 2009). Forster and Church (2006) conclude that the biochemical
approach is still more promising than genetics or comparative genomics. They
and others outline the steps necessary for synthesizing a minimal cell, primarily
from genes found in E. coli (Zimmer, 2003; Forster and Church, 2006; Luisi,
2002). Forster lists the five gaps in our current knowledge that should be filled
for the production of a synthetic minimal cell. The fourth among these is the lack
of “biochemical parameters and computational models sufficiently detailed to
predict the effects of alterations [in a near-minimal cell]” (Forster and Church,
2006). Similarly, Foley and Shuler (2010) list five essential characteristics
of a biotechnological synthetic cell, the fifth being “mathematically defined
interactions and predictable kinetics of (the) system”. These claims illustrate

the importance of the current work to produce a computational MCM.

In 2004, Gil et al. presented an enhanced review of all the previously
proposed strategies for establishing a minimal gene set and proposed what
they called the “core” of a minimal bacterial gene set (Gil et al., 2004). They
started with a computational comparison of five sequenced endosymbionts:
Blochmannia floridanus; Wigglesworthia glossinidia; and Buchnera aphidicola, strains
BAp, BSg, and BBp (Gil et al., 2003). To that, they added in genes that had
functional, but not sequence, similarity amongst the bacteria considered. They
compared their gene set with the essential genes for B. subtilis (Kobayashi
et al.,, 2003) and E. coli (Gerdes et al., 2003), as well as the computationally
and experimentally derived minimal gene sets for M. genitalium (Mushegian
and Koonin, 1996, Hutchison et al., 1999). Genes that were present in all

tive endosymbionts and that appeared to be essential in Mycoplasmas were
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considered essential even if they were determined to be nonessential in bacteria
with larger genomes (Gil et al., 2004). Finally, they analyzed the gene list to fill
in gaps in metabolic pathways that are assumed to be essential. This resulted
in a gene set with 206 protein coding genes (Gil et al., 2004). The total was later
corrected to 207 protein coding genes to account for a step missing from the

pentose phosphate pathway (Gabaldén et al., 2007).

The gene set proposed by Gil has the following features (Gil et al., 2004):

1. A virtually complete DNA replication machinery, composed of one
nucleotide DNA binding protein, single-stranded binding protein (SSB),

DNA helicase, primase, gyrase, polymerase III, and ligase.
2. A simple DNA repair system.

3. A virtually complete transcriptional machinery, including the three
subunits of the RNA polymerase, a ¢ factor, an RNA helicase, and four

transcriptional factors.
4. A nearly complete translational system.
5. Protein-processing, folding, secretion, and degradation.
6. Cell division driven by FtsZ only.

7. Two substrate transporters (PTS for glucose and PitA for inorganic

phosphate).
8. ATP production via substrate-level phosphorylation.

9. Four enzymes from the non-oxidative branch of the pentose phosphate

pathway.

10. Biosynthesis of phospatidylethanolamine from dihydroxyacetone phosphate

and activated fatty acids.
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11. Nucleotide biosynthesis from PRPP and free bases adenine, guanine, and

uracil, which are obtained from the environment.
12. Cofactor biosynthesis from precursors obtained from the environment
13. No pathways for amino acid biosynthesis.

14. No protein transport systems for amino acids or inorganic ions (with the

exception of phosphate).

15. No genes for stable RNA products (i.e. tRNA or rRNA), although they do

define their proposed gene set as a minimal set of ‘protein-coding” genes.

The implementation of these features in the MCM is discussed in Chapter 4.
Gil et al. argue that there may be several possible minimal gene sets, saying
“we should accept that there is no conceptual or experimental support for the
existence of one particular form of minimal cell.” In this work, one potential
mechanism for distinguishing amongst minimal gene sets through computer

modeling is presented.

1.5 Minimal Cell Model

Morowitz proposed that it should be possible to build a genomically complete
computer model of a minimal cell (Morowitz, 1984). This dissertation considers
construction of an MCM based on the gene set proposed by Gil et al. (2004).
However, previous work to establish an MCM attempted to build a minimal
gene set independently. In 2001, the Cornell E. coli model was first used by
the Shuler group as a basis to construct an MCM that simulates a hypothetical

bacterial cell with the minimum number of genes necessary to grow and divide
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in an optimal environment (Browning and Shuler, 2001). The MCM has also
been posed as a generalized model of chemoheterotrophic bacteria, which is
called here the coarse-grained MCM. The original strategy for transitioning
from the original Cornell single-cell model into the MCM was to sequentially
replace ‘pseudochemicals” and ‘pseudoreactions’ components of the model with
distinct chemicals and detailed reactions (Castellanos et al., 2004, 2007). It is our
belief that a detailed model of E. coli would not be computationally tractable
because of its large number of gene products (Browning and Shuler, 2001).
While it was not chemically detailed, the coarse-grained MCM was complete
in terms of physiological function and was modular in its structure. A modular
species is one that can be deconstructed into individual components while still
maintaining the essential connectivity to other functions in the cell (Castellanos
et al.,, 2004). Adding detail to different modules allows us to recombine
those submodels into a functioning whole. This was the basic strategy for

constructing a genomically and chemically detailed MCM.

The MCM is a functionally complete, system-level model formed by
modification of a coarse-grained model of a single cell of E. coli (Browning
and Shuler, 2001; Castellanos et al., 2004, 2007). The E. coli coarse-grained
model can predict growth rate, cell composition, cell size and shape, response
to addition to plasmids or specific genes, and genetic alterations as the
nutrient environment is altered (Domach and Shuler, 1984; Kim and Shuler,
1990; Atlas et al.,, 2008). The coarse-grained model is based on lumped
pseudo-chemical species. However, by “de-lumping” a pseudo-chemical
species to provide genomic and chemical detail one can construct “modules”
that can be incorporated into the overall model. The concept of modularity

has been demonstrated by the inclusion of genomically/chemically detailed
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nucleotide and lipid biosynthesis modules (Castellanos et al., 2004, 2007).
Additionally, detailed genomic information about the location of DnaA binding
boxes on the E. coli chromosome has been incorporated into the coarse-grained
model to predict key features of DNA replication (Atlas et al., 2008). The MCM
described here goes beyond these prior models to describe explicitly all genes
in the cell, all chemical species, and incorporates mechanisms for most cellular

processes.

The MCM focuses on essential functions while finding examples of gene
products that can perform those functions. While the postulated set of minimal
genes may change (e.g. if a new multifunctional protein is found), the set
of essential functions is expected to stay relatively constant. Further, the
technical difficulties associated with generating an experimental minimal cell
and the ambiguities in interpretation of comparative genomic data promote the
establishment of a theoretical computer model of a minimal cell. This model
must be explicit about minimal functions and include a realistic set of proteins
to accomplish these functions. This is, in essence, the primary objective of the

proposed project and the most practical route to a minimal cell.

1.5.1 Previous Work on the Minimal Cell Model

The efficacy of constructing an MCM has been demonstrated in various proof of
concept and validation studies (Browning and Shuler, 2001; Castellanos et al.,
2004; Browning et al., 2004; Castellanos et al., 2007). To confirm that the concept
of modularity was feasible within the modeling framework, the Shuler group

added submodels for nucleotide and lipid metabolism to the MCM (Castellanos
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et al., 2004, 2007). Both of these were selected as good starting points for the
MCM because the pathways involved in the pseudoreactions for nucleotides
and lipids involve a small number of genes (Mushegian and Koonin, 1996).
The discussion below illustrates the principles of modularity by focusing on

the development of the nucleotide module.

It has been demonstrated that it is not the exact values of parameters in the
model that determine function, but that their values relative to one another is
critical (Browning and Shuler, 2001). This hypothesis was tested by varying all
kinetic rates by a scaling factor (or kinetic ratio), and it was found that growth
rate scales directly with the kinetic ratio over about two orders of magnitude.
At low values of growth rate, membrane energization becomes important and
linearity is lost. Cell composition (e.g. protein/cell, RNA/cell, etc.) remains
constant for a wide range of kinetic ratios. Further, relative growth rate changes
for models with different kinetic ratios are essentially the same for a wide
variety of perturbations to cell function (which also confirms the computational
robustness of the model). The general physiological behavior of a variety of
common bacteria (based on experiment) scales with a dimensionless growth
rate. This suggests that the lessons from a hypothetical general cell model will

be broadly applicable to chemoheterotrophic bacteria.

While the M. genitalium genome sequence suggests 25 genes can be
associated with nucleotide metabolism and transport (Fraser et al., 1995),
studies have estimated that as few as 10 of these may be essential (Hutchison
et al., 1999; Mushegian and Koonin, 1996; Kobayashi et al., 2003). The pathway
used in the coarse-grained MCM proposed by Castellanos et al. (2004) includes

11 functions (12 genes) and at the time it was published was the most efficient
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(i.e., had the fewest genes) of any study with a complete pathway. An example
of the equation used in the nucleotide model (Browning et al., 2004) describing
the reduction of dUMP to synthesize dTMP by thymidylate synthase is shown

in Equation 1.5, which is taken from Castellanos et al. (2004).

dPysam
dt
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Equation 1.5 makes use of the following three saturation term assignments

for simplicity:
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Above, kip (time™?) is the maximum rate of synthesis for dTMP synthesis;
Kposart, Kposari-posant, Kpaaav-p21r are saturation or equilibrium constants
(mass/volume); Posin, Posant, Porr, Poaap are the mass per cell of dTMP, dUMP,
ATP, and dUDP respectively, and V¢ is the cell volume. All parameter values
were estimated from experiments reported in the literature (Castellanos et al.,
2004). A key demonstration in (Castellanos et al., 2004, 2007) is that a module
can be de-lumped into genomically and chemically detailed components while
maintaining a fully functional complete cell model. In essence, a coarse-grained

minimal submodel gets embedded in the hybrid coarse-grained whole cell
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model. Thus, we have established the concepts of modularity and connectivity

and demonstrated that hybrid models of real bacteria are feasible.

Another important aspect of the original Cornell E. coli model was that
it mechanistically coupled cell metabolism and growth with events such
as chromosome replication and cell division (Shuler and Dick, 1979; Bailey,
1998). The original model for control of chromosome replication has been
updated (Browning et al., 2004; Atlas et al., 2008) based on more recent
experimental evidence (Hansen et al, 1991; Mahaffy and Zyskind, 1989;
Donachie, 1993). While this model shares similarities with the initiator-titration
model of Hansen et al. (1991), it includes ATP-bound DnaA as the active species
rather than just DnaA. Both deterministic and stochastic versions of control of
initiation of chromosome replication have been incorporated into the model.
The stochastic version is necessary to determine robustness to intracellular

fluctuations in concentrations.

1.5.2 Model Validation

Because the minimal cell is hypothetical, the MCM cannot be validated by
a direct comparison to experimental data. However, the ability to predict
the generalized behavior of chemoheterotrophic bacteria serves as a surrogate
method to validate model predictions. The generalized behavior of such
bacterium is used as a design performance constraint for model development.
The advantage of doing this modeling exercise in a minimal cell is that every
gene and gene product can be specified and the relationship of the system’s

dynamic response to perturbations can be explored; in real cells with genes
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of unknown function there is always ambiguity in the interpretation of such
an experiment. The MCM is built on the concept that all chemoheterotrophic
microbes behave similarly. The model should demonstrate a general behavior
that simulates how microbial growth responds to environmental changes.
The model predictions have been compared to dimensionless microbial
data (Browning and Shuler, 2001; Browning et al., 2004; Castellanos et al., 2004,
2007).

1.5.3 Current Challenges

The Shuler group has proposed the construction of an MCM as an alternative
route to determine a minimal gene set for a chemoheterotrophic bacterial cell.
An initial MCM has been constructed using the Cornell E. coli model as a basis
and biological data (from several bacterial species) for development of new
chemically detailed pathways. The generalized model has been compared to
experimental data. While these approaches to adding realistic detail to the

MCM do work, they are decidedly tedious.

For the current research, I have actively explored ways to increase the rate
at which one can incorporate detail into the MCM by taking advantage of
databases and new algorithm design. The completion of these tools and their
application to the MCM is the focus of this dissertation. In contrast to previous
work, the current research does not attempt to independently select which
genes belong in the minimal gene set. Instead, the comprehensive minimal gene

set proposed by Gil et al. (2004) is used as the basis for a new MCM.

There are two main applications of an MCM. It serves as:
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1. A tool to test our understanding of biology.

2. A platform to test potential constructions of a real minimal cell (a.k.a. a

synthetic cell), as well as to test minimal gene sets in general.

Successful construction of an experimental cell will require a system capable
of replication and evolution fed by only small molecules (Forster and Church,
2006). Therefore, a successful MCM is defined in terms of its ability to
simulate repeated replications in a nutrient rich environment comprised of

small molecules provided in excess.

1.6 Preview of Subsequent Chapters

The Shuler group has pioneered the development of coarse-grained models
of bacterial cells that incorporate chemical and genomic detail for systems of
interest. These models are referred to as hybrid models. Chapter 2 presents a
strategy for sensitivity analysis of hybrid models, with emphasis on the Cornell

E. coli model.

In Chapter 3, an updated version of the Cornell E. coli model that
incorporates a new deterministic model of the initiation of DNA replication
controlled by the DnaA protein. This development was an important step
toward developing a genomically detailed MCM because it was the first hybrid
bacterial cell model to connect detailed genomic sequence information to the

output of the simulation.

Chapter 4 describes the new Minimal Cell Model, including both the

modeling structures used to create it as well as the submodels of metabolism

27



and physiological processes that drive it. The conventions and assumptions
behind the MCM are presented, and the mathematical basis for the model is

explained.

Chapter 5 presents some applications of the MCM. The MCM is used to
calculate growth parameters for a minimal cell, as well as to predict the effects

of various genetic and environmental manipulations

Finally, Chapter 6 describes the conclusions of this research and

recommendations prompted from the new model.

A number of appendices have been included with supplementary
information. These appendices are referred to throughout the dissertation, but
of particular note are Appendix A, Model Naming Conventions, which explains
the system used to name variables and parameters in the MCM, and Appendix
E, which lists the full names of abbreviated chemical species in the MCM, as

well as their initial masses in the cell.
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CHAPTER 2
MATHEMATICAL ANALYSIS OF A SINGLE CELL MODEL OF
ESCHERICHIA COLI

The contents of this chapter are reproduced with permission from the Journal

of Physics: Conference Series'.

2.1 Abstract

We discuss a modular modeling framework to rapidly develop mathematical
models of bacterial cells that would explicitly link genomic details to cell
physiology and population response. An initial step in this approach is
the development of a coarse-grained model, describing pseudo-chemical
interactions between lumped species. A hybrid model of interest can
then be constructed by embedding genome-specific detail for a particular
cellular subsystem (e.g. central metabolism), called here a module, into the
coarse-grained model. Specifically, a new strategy for sensitivity analysis of
the cell division limit cycle is introduced to identify which pseudo-molecular
processes should be delumped to implement a particular biological function
in a growing cell (e.g. ethanol overproduction or pathogen viability). To
illustrate the modeling principles and highlight computational challenges, the
Cornell coarse-grained model of Escherichia coli B/r-A is used to benchmark the

proposed framework.

A general sensitivity and control analysis of periodically forced reaction

INikolaev, E.V., Atlas, J.C., and Shuler, M.L., 2006, “Computer models of bacterial cells: from
generalized coarse-grained to genome-specific modular models”, Journal of Physics: Conference
Series, vol. 46, pp. 322-326, (©2006 IOP Publishing Ltd., http://iopscience.iop.org/
1742-6596
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networks with respect to small perturbations in arbitrary network’s parameters
and forcing frequency was also published (Nikolaev, Atlas, and Shuler, 2007).

The abstract to this work is presented in Appendix G.

2.2 Introduction

Microbial genome sequences have become a central bioinformatic resource
in modern biology by providing access to thousands of accurate metabolic
reconstructions of completely annotated genomes (Overbeek et al., 2005),
as well as genome-scale reaction networks and detailed stoichiometric
models (Palsson, 2004). Despite their dominance and fundamental importance,
intrinsically static metabolic reconstructions and stoichiometric models are, by
themselves, insufficient to explicitly relate genomes to dynamic physiologic
responses. The predictive capability of stoichiometric models is limited
to the calculation of instant phenotype snapshots under fixed medium
conditions.  Therefore, such models cannot capture dynamic changes in
metabolite concentrations, protein machinery, cell geometry, etc. At the same
time, dynamic models are subject to difficulties in terms of sensitivity, stability,

and robustness.

We developed a modeling approach to relate genomic data to dynamic
intracellular processes: generalized hybrid models (Shuler, 2005). Hybrid
models start with a functionally complete coarse-grained model which
explicitly links DNA replication, metabolism, cell division, and geometry to
the external environment (Domach et al., 1984). Such models can describe

changes in energy and redox equivalents, RNA transcripts, transport, etc. The
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availability of detailed metabolic reconstructions (Overbeek et al., 2007) and
genome-scale reaction networks (Palsson, 2004) can significantly accelerate the
development of genome-specific modules (Shuler, 2005) which can then be
reused in many large-scale computer hybrid models for a variety of completely

annotated genomes.

Another advantage of generalized models is that they combine a detailed
summary of the functionality required to sustain the cell’s life with modest-size
model’s complexity.  Such models are thus an ideal platform for the
development of computationally tractable systems biology concepts and
biomathematics approaches. In this chapter, mathematical and computational
approaches to evaluate the model’s sensitivity and robustness are discussed.
Specifically, a new strategy for the extension of Metabolic Control Analysis
(MCA) (Heinrich and Schuster, 1996) to limit cycles is introduced to identify
which pseudomolecular processes should be delumped to implement a
particular biological function in hybrid cell models. To illustrate the modeling
principles and highlight computational issues, the updated Cornell Escherichia

coli B/r-A model is used to benchmark the framework.

2.3 The Model and Computational Frameworks

The Cornell Escherichia coli model, depicted in Figure 2.1, represents a single
cell of E. coli growing in a glucose-ammonium medium. The model describes
metabolism, DNA replication, and cell geometry (Domach et al., 1984). The
modeling principles include: (i) the aggregation of cellular compounds into

a manageable number of lumped species, (ii) the use of pseudochemical
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reactions and accurate stoichiometry, and (iii) the evaluation of as many kinetic
parameters as possible from independent measurements. A recently updated
model includes 36 ODEs for metabolism and DNA replication, one algebraic
approximation of the ribosomal protein biosynthesis, one algebraic equation to
monitor the septum growth, and 31 discrete events describing instant changes
in the model’s parameters and state variables (e.g. changes in gene dosage,
cell division, etc.). Dynamic systems describing a smooth evolution coupled
with discrete transitions are called hybrid. The E. coli model is thus a hybrid
differential-algebraic equation (HDAE), implemented in MATLAB®), C++, and

Systems Biology Markup Language (SBML).

The E. coli model event network is depicted in Figure 2.2, where nodes
correspond to events and arrows indicate how events can cause one another.
We find that DNA replication initiation is the most connected node (i.e. E3)
signifying its central role in the cell cycle. Although MATLAB(®) event detection
is used, additional means are needed to identify “secondary” events induced
by changes in the HDAE definition at each event. To catch all events, a general

event detection algorithm has been developed.

A stationary cell division cycle corresponds to a periodic solution of the
HDAE. One way to study periodic solutions is to compute a first return
or Poincaré map P(s,p), relating any two cell states over least period T,
sty = P(st,p). Here vector s includes masses, concentrations and numbers
of molecules, and p includes model parameters (i.e. kinetic rates). Each
event [ is defined by the zero level of a scalar function Fi(s,p), Fi(s,p) = O.
We assume that s; never corresponds to any event, i.e. F(s;,p) # 0 for all

l=1,...,L, where L is the total number of events. Let H; be an event transition,
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Figure 2.1: The Cornell coarse-grained E. coli model, which includes A; =
ammonium ion, A, = glucose, P; = amino acids, P, = ribonucleotides,
P; = deoxyribonucleotides, P, = cell envelope precursors, M; =
proteins, Mogp = immature ‘stable” RNA, Mygrry = mature stable
RNA, Myy = messenger RNA, M3 = DNA, My = the nonprotein part
of cell envelope, M; = glycogen, PG = ppGpp, e; = enzyme in the
conversion of P2 to P3, and e, and e; = enzymes for cell envelope
and cross-wall formation. Solid lines indicate flow of material, while
dashed lines indicate flow of information. Here v; is the rate of
pseudoreaction <.
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Figure 2.2: Events: E; = completion of DNA methylation, E; = transition of
replicon state, E; = DNA replication initiation, E,E¢s = changes in
dnaA dosage, E; E,4 = changes in rrn-operon dosage, Es; = DNA
replication termination, Eys = cell division, Ey; = the ability of
DnaA-ATP and Eys = the ability of DnaA-ATP to bind high affinity
DNA boxes, Eqg = the ability of DnaA to bind medium affinity boxes,
Esy = the ability of DnaA to bind nonspecific boxes, and Ej3; = the
ability of DnaA to bind the triggering R5 box in oriC.

(st,p") = Hi(s™,p~), where (s™,p*) and (s~,p~) are chosen right after and
just prior event [, respectively. If all DAEs defined between events, H;(s, p), and
F(s, p) are smooth, then P(s, p) is smooth in both s and p. This follows from the
decomposition of P(s, p) into superposition of the smooth time shifts Qy along
the trajectories of the corresponding DAEs and the event transitions (Equation

2.1).

P(s¢1r,p) = Quii o HpoQr_10...Qq 0 Hy 0 Qo(se, p) (2.1)

Here, Qo(si,p) is the transition between s; and the first event, and

Qr1(St+T, p) is the transition between the last event and s¢,1. A fixed point
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so of P(s, p) uniquely defines the stationary cell division cycle. The fixed point
so can be found from the nonlinear equation s = P(so, p) using Newton-like

solvers.

An alternative approach to calculate periodic solutions is to solve a periodic
multi-point boundary value problem (BVP) for a discrete closed orbit z =
[(to,80,P0); - - -, (tL+1,8L+1, PL+1)], So = sL+1 (Phipps, 2003; Doedel et al., 2004).
Here each (s, p1) is chosen just prior to event [. The unknown period 7', event
times ¢i,...,%¢;, and states s; can be found using Newton solvers. Additional
mesh points between events and a phase condition are needed to increase the
accuracy and uniquely determine the periodic solution, respectively (Doedel

et al., 2004).

Typical time courses are shown in Figures 2.3 and 2.4. We find that
while changes in some species (e.g. ammonium ions, proteins) look “smooth”
between divisions, other species (e.g. different forms of DnaA molecules or

RNA transcripts) experience complex behavior throughout the entire cell cycle.

2.4 Sensitivity and Stability of the Cell Division Cycle

Sensitivity analysis is an important tool for model evaluation as well as for
quantifying effects of parameter values on model predictions (Tomovi¢ and
Vukobratovité, 1972). Specifically, it is important to characterize the relative
significance of various intracellular dynamic processes for modeling a growing
cell. This can be done by an appropriate extension of MCA to the case of
self-oscillations in autonomous hybrid systems. Let s(t, p) be a stable periodic

solution with least period 7'(p), where p is a vector of the system’s parameters.
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Figure 2.4: Free DnaA-AT'P in the E. coli model.
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A well known property of such solutions in smooth dynamic systems is that a

tirst-order sensitivity function (Equation 2.2),

Js(t, p)

uk(t7 p) = apk

(2.2)

is generally unbounded when time tends to infinity (Tomovi¢ and
Vukobratovité, 1972; Kholodenko et al., 1997). Here &k = 1,..., K, where K
is the number of parameters. The key idea to understand and overcome this
analytic difficultly can be seen from the differentiation of periodic condition

s(tm(P), P) = s(to, p) with respect to any scalar parameter p; (Equation 2.4).

(tm(p — to) ‘ 0In'T(p) . ds(to, p)
Px 01n py dt ’

tm(p) = to+mT(p), (2.3)

Uk (tm(P);P) = ux(to,p) —

m = 1,2,...

We find that uk(tm,(p),p) becomes unbounded as the number of cell cycles
m infinitely increases. By rescaling time as 7 = 27t/T(p), the unbounded

T'(p)-dependent term can be eliminated from Equation 2.4,

Uk(T + 27T7 p) = Uk(T7 p)7

_ 98(7,p)
Uk<7—7 p) - apk ) (24)
_ (T)7
S<7_7 p) - S( o ap)
The normalized period (i.e. 7" = 27) and frequency (i.e. w = 1) are now

independent of any parameter. Dimensionless time 7 can be interpreted as
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the phase ¢ of the cell cycle, ¢ = 7(mod27). Similar time scaling is used in
the sensitivity theory (Tomovi¢ and Vukobratovit¢, 1972) and the bifurcation
analysis of limit cycles (Doedel et al., 2004). Using Equation 2.5, the summation
laws quantifying the ability of enzymes to influence periodic processes can be
readily obtained for cellular systems where the enzyme activities enter reaction
rates (Equation 2.5) linearly (Heinrich and Schuster, 1996; Kholodenko et al.,
1997).

vi(s, P;) = PW;(s) (2.5)

Here p; and w;(s) are the catalytic activity the turnover rate of enzyme j,
respectively. Indeed, rescaling all p; by the same nonzero factor A will merely
result in the change of the time scale (Heinrich and Schuster, 1996; Kholodenko
etal., 1997).

T(Ap) = @,
Si<t7/\p) = Si()‘tvp)v (2.6)

vi(t,Ap) = Av;(At,p)

Here v;(t,p) = vj(s(t,p),p). Using Equations 2.5, 2.7 and flux notation

Ji(1,Ap) = v;(S(7, p), p), we obtain Equation 2.8.

T(Ap) = @,
Sz(Ta/\p) = Si(Tap)v (27)

Jj(Tv )\p) = )‘Jj(Tv p)
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The summation laws limiting changes in the period and shape of the limit
cycle parameterized in Equation 2.5 follow from the differentiation of identities

(Equation 2.8) with respect to non-zero scaling factor A at A = 1.

OInT(p)
Z o1 -1
j—l e
01n S;(7,p)
Z S, =0, (2.8)

Here J;(7,p) are assumed positive (Heinrich and Schuster, 1996; Kholodenko
etal., 1997). Using definitions (Equation 2.5), the first-order sensitivity functions
can be obtained for any model’s parameter. Ranking amplitudes of U (7, p) or
averaged flux control coefficients (AFCC), important processes can be identified
as in Figure 2.5. These can be used for delineating those modules for which

additional genomic and chemical detail would be required.

Stability analysis shows the model’s potential (via a Hopf bifurcation) for

2m
wo’

modulated quasi-periodic oscillations with large secondary period 75 =
T, ~ 28hr, where wy, = Imypu, and p is a complex multiplier with the largest
imaginary part inside the unit circle on the complex plane depicted in Figure
2.6. We find that while metabolic processes contribute to the fastest part of the
‘cell clock” with division period 7" of 45 min, a slower part of the clock has to be

transmitted between cell generations.
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Figure 2.5: Sensitivity of the E. coli model to changes in parameters. Black
and white bars correspond to AFCCs of the specific growth and
lipids synthesis rates, respectively. The processes labeled by integer
numbers are depicted in Figure 2.1.

Figure 2.6: Multipliers of the limit cycle. Only a few multipliers have large
magnitudes, while the others” magnitudes are very small and are
clustered close to the origin.
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2.5 Conclusions

We are currently developing general MCA and BVP approaches to study the
robustness of hybrid whole-cell models when parameters are allowed to vary.
This includes relating variations in growth conditions to changes in the number
of replicating chromosomes, sensitivity analysis of the DNA replication,
identification of independent measurements to fit important parameters, etc.
We hope that these approaches will also help us construct large-scale genome
specific modules for E. coli and other genomically related Gram-negative

organisms (e.g. Shewanella oneidensis and Zymomonas mobilis).
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CHAPTER 3
INCORPORATING GENOME-WIDE DNA SEQUENCE INFORMATION
INTO A DYNAMIC WHOLE-CELL MODEL OF ESCHERICHIA COLI:
APPLICATION TO DNA REPLICATION

The contents of this chapter are reproduced with permission from IET

Systems Biology'. The original paper was published by Atlas et al. (2008).

3.1 Abstract

The advent of thousands of annotated genomes, detailed metabolic
reconstructions, and databases within the flourishing field of systems biology
necessitates the development of functionally complete computer models of
whole cells and cellular systems. Such models would realistically describe
fundamental properties of living systems such as growth, division, and
chromosome replication. This will inevitably bridge bioinformatic technologies
with ongoing mathematical modeling efforts and would allow for in silico
prediction of important dynamic physiological events. To demonstrate a
potential for the anticipated merger of bioinformatic genome-wide data with
a whole-cell computer model, we present here an updated version of a
dynamic model of Escherichia coli, including a module that correctly describes
the initiation and control of DNA replication by nucleoprotein DnaA-ATP
molecules. Specifically, we discuss a rigorous mathematical approach used

to explicitly include the genome-wide distribution of DnaA binding sites

1 Atlas, J.C., Nikolaev, E.V., and Shuler, M.L., September 2008, “Incorporating Genome-Wide
DNA Sequence Information into a Dynamic Whole-Cell Model of Escherichia coli: Application
to DNA Replication”, IET Systems Biology, vol. 2, no. 5, pp. 369-382, (©QThe Institution of
Engineering and Technology 2008.
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on the replicating chromosome into a computer model of a bacterial cell.
We also provide a new simple deterministic approximation of the complex
stochastic process of DNA replication initiation. We show for the first time that
reasonable assumptions about the mechanism of DNA replication initiation can
be implemented in a deterministic whole-cell model to make predictions about
the timing of chromosome replication. Furthermore, we propose that a large
increase in the concentration of DnaA binding boxes will result in a decreased

steady-state growth rate in E. coli.

3.2 Introduction

3.2.1 Bacterial Cell Models

The advent of thousands of annotated genomes (Overbeek et al., 2007) and
detailed metabolic reconstructions and databases (McNeil et al., 2007) in the
emerging field of systems biology accentuates the need for systems level models
of bacterial cells that explicitly link genomic data to fundamental properties
of living systems such as growth, division, and robust control of DNA
replication (Shuler, 2005). This will inevitably bridge bioinformatic technologies
and data with ongoing mathematical modeling efforts and allow for in
silico reproduction and prediction of dynamic physiological events (Palsson,
2006; Shuler, 2005; Overbeek et al., 2007). To exemplify the combination
of bioinformatic genome-wide data with a whole-cell computer model, we
present here an updated version of a dynamic model of Escherichia coli,

including a module that correctly describes the initiation and control of
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DNA replication by nucleoprotein DnaA-ATP molecules. Specifically, a novel
rigorous mathematical approach to explicitly include genome-wide positions
of the DnaA binding sites along the replicating chromosome into a computer
model of a bacterial cell will be discussed. We assert that these approaches
can be extended to all Gram-negative bacteria with minimal changes, including
bacteria such as Shewanella oneidensis and Zymomonas mobilis which have

immediate practical importance.

Many investigators have used modeling to make significant contributions
to our understanding of bacterial metabolism. Some studies take advantage
of detailed genomic information such as in (Keseler et al.,, 2005), while
other models are based primarily on flux balance analysis, mathematical
techniques for optimization (Palsson, 2006; Nikolaev et al., 2005), and metabolic
control analysis (MCA) (Kholodenko and Westerhoff, 2004). These modeling
techniques are, however, intrinsically static, and they have limited ability
to predict aspects of cell regulation and dynamical response. Others have
proposed methods to directly incorporate kinetic information into models
of central metabolism (Chassagnole et al., 2002) or combine submodels of
metabolic processes into larger cell models (Snoep et al., 2006). Some
have attempted to model whole cells, for example the E-cell or Silicon Cell
projects (Tomita, 2001; Tomita et al., 1997; Morgan et al., 2004). These studies,
and many others, make important contributions to our perception of systems
biology. However, those models often neglect important, non-metabolic aspects
of cell growth (e.g. control of chromosome replication or gene duplication)
because there is no formalism to handle such “events” in the context of a cell

model.
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The Shuler group first described a mathematical model of a single E. coli
cell in 1979 (Shuler and Dick, 1979). At that time, it was the only model of
an individual cell that did not dictate timing of cell division (e.g. growth
rate) and cell size; instead, those aspects were outputs of the simulation. This
“coarse-grained” model contains all of the functional elements necessary for
the cell to grow, divide, and respond to a wide variety of environmental
perturbations. All metabolic chemical species are included, but they are lumped
into pseudochemical groups. The model is unique in its natural coupling
of metabolism, transport, and cellular events, and it responds explicitly to
changes in concentrations of nutrients in the environment (Domach et al.,
2000). This base model has been embellished with additional biological
details to allow prediction of a wide-range of responses to environmental
and genetic manipulations (Shuler, 1999). The initial model included only 18
pseudochemical species that represented large groups of related metabolites.
Figure 1 lists the model components and graphically depicts the relationships

between them.

The mathematical description of the cellular functions in the model is
based on time-variant mass balances for each component. Each mass balance
takes into account the component’s synthesis, utilization, and degradation,
as a function of availability of precursors, energy, and relevant enzymes.
Stoichiometric coefficients for relating components through mass balances were
derived primarily from published research or experiments. It is important
to note that the model was not developed by using adjustable parameters to
tit model predictions to experimental results, nor did the stoichiometric mass
balances assume a steady-state (i.e. the amount of each component was allowed

to vary with time). Despite the simplifications made in describing the cell, the
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model accurately predicts changes in cell composition, size, and shape as a
function of changes in external glucose and ammonium concentration (Domach

et al., 2000; Lee et al., 1984; Shuler and Domach, 1983).

The original model explicitly describes discrete events that are typically
ignored in other models (Nikolaev et al., 2006). For example, changes in
gene dosage (the number of copies of a gene in a cell at a given time)
depend on the replication fork position, and the completeness of cross-wall
formation depends on the cell size and amount of cell membrane components
synthesized. =~ Other biochemical details have been added in subsequent
studies; for example, amino acids are differentiated into five families (Shu
and Shuler, 1991) and the synthesis of ribosomes has been incorporated in
greater detail (Laffend and Shuler, 1994a). These expansions allow the study of
amino acid supplementation (Shu and Shuler, 1991) and of competition between
recombinant mRNA and ribosomal mRNA in the context of high translational
activity (Laffend and Shuler, 1994a). The model has also been applied to
improve the use of plasmids for recombinant protein production (Laffend and

Shuler, 1994a,b; Kim et al., 1987; Kim and Shuler, 1990b,a).

More recently, we have extended the classical steady-state MCA to the case
of periodic processes (Nikolaev et al., 2007) to link the replicon’s periodic control
coefficients to the sensitivities of metabolic processes in the entire cell (Nikolaev
et al., 2006). Bailey reviewed the importance of the E. coli model to the whole
field of mathematical modeling in biochemical engineering (Bailey, 1998). The
current study improves the existing model by adding mechanistic and genomic
detail to the DNA replication module. This allows us to make predictions about

the effect of DnaA binding site concentration on cell growth.
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3.2.2 DNA Replication in Gram-Negative Bacteria

To explain the structure of the new model, we describe here some important
aspects of the DNA replication process in E. coli. The time of initiation of DNA
replication and the rate of movement of the DNA replication fork along the
chromosome alter cell physiology. Figure 3.1 summarizes the major processes of
DNA replication initiation control. The nucleoprotein DnaA has been shown to
act as an initiator of chromosome replication. Initiation of the DNA replication
process requires the binding of about 25-30 active DnaA molecules to the DNA
origin, oriC' (Donachie and Blakely, 2003). When this happens, oriC' migrates
and associates with the SeqA complex (Figure 3.1(a)). The oriC' and dnaA
are sequestered in the SeqA-DnaA protein complex for about one-third of the
cell-cycle (Figure 3.1(b)). The occupation of the dnaA promoter by the SeqA
protein causes repression of dnaA expression (Torheim and Skarstad, 1999).
SeqA spreads over oriC by cooperative binding (Skarstad et al., 2000), releasing
DnaA from oriC. Also, acidic phospholipids inhibit DnaA binding to oriC
(Figure 3.1(b)).

DnaA exists primarily in two forms in the cell: an active form bound
to ATP (DnaA-ATP), and an inactive form bound to ADP (DnaA-ADP). A
myriad of competing processes dynamically control the relative concentrations
of DnaA-ATP and DnaA-ADP. DnaA protein is continuously produced from
the dnaA gene and almost instantaneously assumes the DnaA-ATP nucleotide
form due to the abundance of ATP molecules in the cytoplasm. Due to
weak intrinsic hydrolysis, DnaA-ATP is slowly converted into DnaA-ADP. The
electrostatic-hydrophobic interaction between basic DnaA molecules and acidic

phospholipids facilitates the insertion of DnaA into the lipid membrane leading
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Figure 3.1: DNA replication in a Gram-negative bacterial cell. Oval rings are

chromosomes. Parallel solid lines represent the cell membrane. (a)
Newborn Cell: Control of active DnaA in a newborn cell. The
datA box is a region that tightly binds and titrates many DnaA
molecules, yet is not involved directly in initiation (Katayama et al.,
2001). dnaN codes for the § clamp subunit of the replisome.(b)
Replication Initiation: At the moment of replication initiation, the
oriC is sequestered to the cell membrane for about one-third of
the cell-cycle. (c) Control of replication: RIDA and DnaA-ATP
regeneration pathway (RIDA = Regulatory Inactivation of DnaA).
(d) Division: SeqA-associated partition apparatus model (Hiraga
et al., 1998).
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to its conformational change back to the DnaA-ATP form (Castuma et al., 1993;
Crooke et al., 1992; Garner et al., 1998; Kitchen et al., 1999; Sekimizu and
Kornberg, 1988; Yung and Kornberg, 1988). Like many peripheral proteins,
DnaA is in a dynamic equilibrium between membrane-bound and soluble forms

(Figure 3.1(a)).

The nucleotide forms of DnaA protein (DnaA-ATP and DnaA-ADP) are
carefully controlled during the cell division cycle (Bremer and Churchward,
1991; Kurokawa et al., 1999; Messer, 2002; Speck et al., 1999). The
moving [-clamp-associated Regulatory Inactivation of DnaA (RIDA) factor
positively accelerates hydrolysis of ATP to ADP-bound forms to repress extra
initiations (Katayama et al., 1998) (Figure 3.1(c)). The content of the ATP-bound
form of DnaA protein is maintained at a low level (but not less than 100
molecules per cell) and only around the time of initiation is increased by
80% (Donachie and Blakely, 2003). Accumulation of DnaA-ATP requires
efficient regeneration of DnaA-ADP to DnaA-ATP and temporal inhibition of
RIDA. DnaA-ATP titration to multiple nonspecific binding sites also reduces
the accumulation of free DnaA-ATP in the cell (Schaefer and Messer, 1991)
(Figure 3.1(c)). The SeqA-DNA complex might act as the centromere for the
chromosome, and at the time of initiation it too duplicates. One copy is
subsequently passed to each daughter cell. Coincident with termination of
a round of chromosome replication, these two SeqA complexes migrate in
opposite directions from midcell towards the 1 and 2 positions. Therefore, prior
to septum formation, the cell has two SeqA foci at the cell quarter sites (Hiraga

et al., 1998) (Figure 3.1(d)).

A DnaA box is a DNA sequence that binds the DnaA protein, and
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DnaA boxes of varying strengths are known to exist (Schaefer and Messer,
1991; Schaper and Messer, 1995). Titration of both nucleoprotein forms of
DnaA protein by DnaA-binding boxes along the replicating chromosome helps
control DNA replication initiation (Hansen et al., 1991b) (Figure 3.1(c)). To
understand the effect of DnaA boxes on cell behavior, a more complete
mechanistic description of the dynamic changes in the number of the boxes
along the replicating chromosome is required. The sequence positions of the
corresponding DnaA-binding sites along the chromosome are available from
the organism’s complete genomic sequence. Given these positions, DnaA
binding sites can be directly incorporated into the model. Because the number
of DnaA-ATP molecules bound to oriC' is relatively small, the robustness of
replication with respect to stochastic fluctuation of DnaA monomers has been
investigated (Browning et al., 2004). It was established that the process is
robust to fluctuations, and that it can therefore be modeled using a deterministic

method rather than a computationally expensive stochastic approach.

The goal of this chapter is to demonstrate the potential for explicitly merging
genome-wide bioinformatic data with whole-cell modeling efforts. Specifically,
we aim to directly include DNA sequence information in the chromosome
replication module of the E. coli model described in Section 3.2.1. Previous
studies have made significant advances in the modeling of DNA replication
in E. coli (Mahaffy and Zyskind, 1989; Hansen et al., 1991b; Browning et al.,
2004). In (Mahaffy and Zyskind, 1989), five states of DnaA protein were
modeled, including active and inactive forms. This single-cell model included
a stochastic description of the binding of DnaA to oriC, while the other
biochemical reactions were described deterministically. Later, (Hansen et al.,

1991b) introduced the concept of initiation-titration, where the free DnaA
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concentration is modulated by the presence of DnaA boxes on the chromosome,
into a computer model that did not include cell-division. While both of these
studies did acknowledge that DnaA binds to the chromosome, and that this
sequestration affects DNA initiation, neither study used sequence information
when modeling the distribution of DnaA boxes on the chromosome (nor was
such information available, at the time). Furthermore, these models did not
address the presence of DnaA binding sites on the chromosome with varying
affinity. Here, we draw on these studies to create, for the first time, a
whole-cell deterministic model of DnaA-ATP controlled DNA replication in E.
coli which takes advantage of more recent experimental discoveries. This model
uses specific bioinformatic sequence information as a basis for modeling the

distribution of DnaA boxes of varying affinity on the chromosome.

3.3 Methods and Model Description

3.3.1 Modeling DNA Replication Timing

The original E. coli model proposed that initiation of DNA replication
was controlled by a hypothetical repressor protein encoded by the dnaA
gene (Domach et al., 2000). It is now known that dnaA actually codes for an
initiator protein, DnaA, that promotes DNA replication initiation (Speck et al.,
1999). Many experimental observations (Donachie and Blakely, 2003; Hansen
et al.,, 1991a; Messer, 2002; Speck et al.,, 1999) and computational modeling
studies (Bremer and Churchward, 1991; Hansen et al., 1991b) have revealed

the importance of DnaA binding boxes for determining the timing of DNA
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replication initiation. Only the active nucleotide state of DnaA (i.e. DnaA-ATP)
can initiate replication. The concentration of free DnaA-ATP, and therefore
the timing of DNA replication initiation, is regulated by four independent

mechanisms (Camara et al., 2005):

e Initiator Titration - The titration of newly synthesized DnaA molecules

by DnaA binding boxes throughout the cell cycle (Hansen et al., 1991b).

e Regulatory Inactivation of DnaA (RIDA) - RIDA promotes the hydrolysis
of ATP bound to DnaA, thereby deactivating it. RIDA is stimulated
by DNA synthesis, resulting in a negative feedback effect which helps

prevent initiation from occurring too frequently (Katayama et al., 1998).

e Membrane Sequestration - After initiation, the origin of replication
(i.e., oriC) is sequestered to the SeqA protein in the cell membrane,
which forces the release of DnaA molecules and prevents re-initiation for

one-third of the cell cycle (Messer, 2002).

e Semi-Methylation - After an origin is initiated, it is unable to undergo
another immediate initiation, possibly due to membrane sequestration of

the incompletely methylated chromosome (Skarstad et al., 2000).

Taken together, these mechanisms prevent “false-start” initiations. Some of
the essential mechanisms have been implemented in the new DNA replication
module, including DnaA titration and activation. Figure 3.2 summarizes these

interacting regulation processes (Camara et al., 2005).
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Figure 3.2: DnaA-ATP activation/inactivation and the regulation of DNA
replication initiation pathways. DnaA nucleoproteins with ‘F
subscripts are free in the cytoplasm. DnaA binding boxes are either
High affinity (H), Medium affinity (M), or Low affinity /Nonspecific
(L). T denotes the Trigger R5 DnaA box.

3.3.2 Dynamical Changes in the Number of DnaA-Binding

Boxes Along the Replicating Chromosome

The following four important types of DnaA boxes and their binding affinities
have been identified (Donachie and Blakely, 2003; Schaefer and Messer, 1991;
Schaper and Messer, 1995):

e (H) Nine high affinity boxes.
¢ (M) Ninety-four medium affinity boxes.

e (L) Low affinity (nonspecific) boxes uniformly distributed along the

chromosome.
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o (T) Trigger box R5, which is directly involved in the initiation of the DNA

replication.

In reality, the boxes display a spectrum of binding affinities which we neglect
here for simplicity. The DnaA titration and DnaA-ATP initiation reaction

pathways model are schematically depicted in Figure 3.2.

Note that only one molecule of nucleoprotein DnaA at a time can bind a box,
while about 25-30 nucleoprotein DnaA molecules can form a complex at the
chromosomal origin, oriC'. To obtain a genome-wide distribution of the spatial
positions of the DnaA-binding boxes along the bacterial chromosome, we have
searched the complete E. coli K-12 genome in windows of 9bp corresponding to
the consensus sequence TT(A/T)TNCACA (Schaper and Messer, 1995). The
search algorithm simply steps through the genome one window at a time
locating occurrences of the DnaA box sequence (Browning et al., 2004). The
search provided us with the chromosomal positions of H and M specific boxes
leading to the construction of the cumulative number distributions (CND) of
the H and M boxes (Figure 3.3). These CNDs are obtained by starting with the
number of boxes near the DNA terminus and adding each additional box on the
chromosome as one follows along the DNA up to the oriC position. In statistics,
similar distributions are referred to as cumulative frequency distributions. Because
the number of the nonspecific boxes (i.e. L-boxes) should be proportional
to the total chromosomal length, we approximate its CND using a uniform
distribution described by the scalar factor aj, where ay, is the total number of
all E. coli DNA base pairs, [V, = 4639221 (Blattner et al., 1997), divided by 9 (the

length of the consensus sequence) (3.1).
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Figure 3.3: Cumulative number distribution functions (CNDs) for the high (i.e.

H) and medium (i.e. M) affinity DnaA-binding boxes along the E.
coli K-12 chromosome. The circles correspond to the high affinity
H-boxes (i.e. CND is Fi(y)) and the squares correspond to the
medium affinity M-boxes (i.e. CND is Fy(y)). Coordinate y is the
fractional distance along the chromosome counted from its terminus.
The dashed curves correspond to the best fit to equation (3.2).
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ar = % = 515496 (3.1)

The CNDs for the H-, and M- can be fitted using the quadratic form in

equation (3.2).

Here the distribution parameters have been fit in Figure 3.3, with ay = 63.694
and by = 29.596 for H-boxes, ay; = 5.1201 and b,; = 4.368 for M-boxes, and aj, =
515496 and b;, = 0 for L-boxes. Coordinate y in (3.2) is the fractional distance
along half of the chromosome counted from its terminus, such that y = 0
corresponds to the terminus and y = 1 corresponds to oriC. Coordinate y is
counted from the terminus rather than from oriC' because the chromosomal
origin can replicate multiple times for a single terminus. After initiation, two
replicating forks progress along the chromosome with the same rate in opposite
directions from y = 1 to y = 0. Because the forks move at the same rate, we can

consider only half of the circular chromosome (Domach et al., 2000).

The expression (3.2) and the corresponding CNDs have been obtained by
recalculating the positions of all DnaA boxes in terms of the y-coordinate, and
then fitting CNDs of the form of (3.2) to the distributions. Using CNDs is
possible because we are only interested in the timing of appearance of the
newly synthesized DnaA boxes and not in their absolute spatial positions
along the entire chromosome. The nonlinear cumulative distributions (3.2) can

significantly contribute to robust DNA replication initiation control (Hansen
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et al., 1991Db).

It is important to note that ay, by, ay, and by, are parameters that describe
precisely the distribution of DnaA boxes in the E. coli genome, while we are
postulating that parameter a; alone can describe the theoretical upper limit
on the distribution of non-functional binding sites on the chromosome. We
consider the effect of varying the H-, M-, and L- box distributions in Section
3.4.1, where the H- and M- box concentrations can be increased or decreased,

but the L-box concentration can only be decreased.

A growing E. coli cell can have up to 14 replication forks moving along
the chromosome simultaneously (Figure 3.4). Although a pair of forks is
always assembled on the original chromosome (Figure 3.4(a)), there can be
two more pairs of moving forks synchronously emanating from the two new
oriC' (Figure 3.4(b)). Similarly, there can be four new pairs of moving forks
synchronously initiated before the previously initiated forks reach the terminus
(Figure 3.4(c)). Given the complexity of the DNA replication dynamical
process, it is important to rigorously describe the dynamical changes in the
corresponding DnaA-binding boxes along the replicating DNA strand. Pairs of
moving forks, simultaneously emanating from the same oriC, can be described
in terms of a single coordinate position y along the chromosome. We denote
such representative forks as Fork,, Fork, and Forks, which have coordinates
Y1, Y2, and ys3, respectively, such that 0 < y; < y» < y3 < landy = 0
corresponds to the terminus. Then, using the CNDs given by the expressions
in (3.2), the dynamical changes in the numbers of H-, M-, and L-binding boxes
can be calculated by equations (3.3), (3.4), and (3.5) (see Appendix H).
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(a) ()

Figure 3.4: Replication fork counting. Depending on the external environment,
a growing E. coli cell can have (a) 2, (b) 6 and (c) 14 replication forks
moving along the replicating chromosome. AS is the fraction of
the DnaA-binding boxes formed on the newly synthesized lagging
strands, (a) AS = AS', (b) AS = AS' + 2AS?, and (c) AS =
AST +2A5?7 + 4AS3.
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Sk = Nchrom . (ak : A(y173/2>y3) + bk : B<y17y27y3))7 (k = H7 M7 L)? (33)

Ayr,y2,y3) = y1 +2(y2 — y1) + 4(ys — y2) + 8(1 — v3), (3.4)

Byi,y2,y3) = yi +2(y3 — yi) + 4(y5 — v3) +8(1 — 43). (3.5)

Here Sy is the number of high affinity H-boxes, Sy is the number of medium
affinity M-boxes, and S, is the number of nonspecific low affinity L-boxes.
Nehrom 18 the total number of synchronously replicating chromosomes, N.prom €
{1,2,3}. Function A(y1,v2,ys3) represents the total length of the symmetric
half of the replicating chromosome, while function B(y;, y2,ys) is a nonlinear
function used to calculate the total number of binding boxes. A and B are
the same for all boxes, and similar functions could be applied for alternate
binding boxes distributed through the chromosome. After the completion of
DNA replication, defined by the time moment when Fork; reaches the terminus
(i.e. when y; = 0), the Forks and their positions are updated using the update

rules in (3.6) and (3.7).

Forky — Forky, Forks — Forks (3.6)

Ys = Y2,Y2 = Y1, 1 — Y3 (3.7)

When DNA replication completes, the oldest replication fork “becomes” the

new first fork, and the position variables y; are likewise updated.
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3.3.3 Ordered and Sequential Binding of DnaA-ATP Molecules

to oriC

By footprint analysis and electron microscopy, it was shown that the buildup
of approximately 25-30 monomers of the nucleoprotein complex of DnaA
protein at the chromosomal origin (i.e. oriC), DnaA-ATDP, is required to
unwind oriC, resulting in DNA replication initiation (Donachie and Blakely,
2003). This DnaA-ATP binding process proceeds through seven distinct ordered
states (Crooke et al.,, 1993; Margulies and Kaguni, 1996). Although this
important experimental observation lacks explicit mechanistic molecular detail,
we model the overall stochastic process by using a deterministic approximation
that allows us to capture essential transitions between the seven stages of the
formation of the active DnaA-ATP nucleoprotein complex at oriC, called here
a replicon (Margulies and Kaguni, 1996). The formation of different oriC-DnaA
protein complexes through seven distinct stages can be presumably explained
by different affinity properties of the 9-mer binding sequences in oriC, called
the R1-R4 binding boxes. Specifically, DnaA protein binds to box R4 with
about 3-fold higher affinity than it binds to box R1 (Margulies and Kaguni,
1996). Therefore, the entire replicon complex is formed when DnaA boxes
with higher affinities are first occupied with DnaA protein molecules which
then sequester binding DnaA molecules to nearby boxes through cooperative

effects (Margulies and Kaguni, 1996).

We assume inert binding of DnaA-ADP nucleotide form of DnaA protein
to oriC' can be neglected (Crooke et al., 1993; Margulies and Kaguni, 1996).
Because the number of DnaA-ATP molecules necessary to build the DnaA-ATP

complex (i.e. replicon) at oriC is small, a stochastic “birth-and-death” process
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can formally be used to describe the corresponding complex transitions (Feller,
1968). There are four different kinds of events which change the configuration of
the replicon at oriC" (i) spontaneous association of DnaA-ATP molecules with
the bare oriC, (ii) spontaneous association of DnaA-ATP molecules with the
replicon formed at oriC, (iii) spontaneous dissociation of DnaA-ATP molecules
from the replicon, and (iv) the spontaneous transition of the replicon between
different states. The master equation describing the continuous Markov
chain corresponding to the stochastic process is an infinite system of ordinary
differential equations. In some cases, the unique solution to the master equation
can be found using generating functions (Feller, 1968). However, in a general
case, solving the master equation is complex, and reasonable approximations
are needed. Here we use a simple deterministic approximation approach to
model the stochastic process of the formation and the transition of the replicon

at oriC.

About 28 molecules of DnaA-ATP can in average bind to oriC' through the
seven distinct ordered states required to start DNA replication in E. coli (Crooke
et al., 1993; Margulies and Kaguni, 1996). Given this experimental evidence,
we assume that about four DnaA-ATP molecules can in average bind to the
replicon at oriC' at each of the seven replicon states. Let P,.,c be a stationary
probability that the replicon moves between states Rand R+ 1, R =0,1,...,7.
Once R = 7, four more molecules of DnaA-ATP bound to the replicon will
trigger the initiation of DNA replication. We denote by (N, ) the averaged
number of DnaA-ATP molecules bound to the replicon at state R. Then (Nf )
is proportional to the number of DnaA binding boxes Ny = 4, times the replicon
state (i.e. R) times the probability that the replicon can be found at state R (i.e.

(Pyric)). Therefore, the averaged number of DnaA-ATP molecules bound to
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the replicon at state 12 can be approximately estimated using the mathematical

expectation as in equation (3.8).

<NgnaA> ~ Noric * Np - R - (PoriC)R (38)

Here N,,;c is the number of all replicating DNA origins in the cell and N is
the number of functional DnaA binding boxes within oriC, Ng = 4 (Crooke
etal., 1993; Margulies and Kaguni, 1996). After binding of four more DnaA-ATP
molecules to the replicon, as discussed above, (N?, ) ~ 28 at R = 8. Here
R = 8 does not correspond to any replicon state and, instead, corresponds to the
discrete replication initiation event. Using (N9, . .) ~ 28, Ny.ic = 1, Np = 4, and
R = 8in (3.8), we can solve (3.8) for the probability P,,;c, yielding P,.,c = 0.985
used in the model. Letting N,,;c = 1 for simplicity, it can be seen from (3.8) that
about four DnaA-ATP molecules are added to the replicon after each transition

R— R+1.

Let P, be a monotonically increasing function that can be interpreted as a
“replicon state transition probability” at time ¢. Then the time moment ¢ = ¢’
corresponding to the actual discrete event of the transition between the replicon

states R and R + 1 can be determined by the event condition (3.9).

Pt’ - PoriC (39)

Therefore, for t” < t < t/, with t” corresponding to the time of the previous event
transition, no transitional event is possible (i.e. because P, < P,.;¢c). Let S Dnaa
be the number of the DnaA-ATP-bound H-boxes outside the formed replicon

and let Sy be the number of free H-boxes at time ¢. Then the monotonically
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increasing transitional probability P, can be estimated at time ¢ using the

combinatorial formula (3.10) as discussed in Appendix H.

[(Sppaa+1)  T(Sy—Ng+1)
I'(Spnaa — N + 1) L'(Sy+1)

P, ~ (3.10)

Here I'(n) is the Gamma function, which for integer values of n is I'(n + 1) =
n! (W.H. et al., 1988). The probability of the formation of the replicon at bare
oriC' can be obtained in a similar way (see Appendix H). The nucleoprotein
DnaA is continually synthesized, causing a corresponding increase in the
number of DnaA molecules bound to H-boxes outside the replicon (i.e. S Dnan),
along with a decrease in the number of free H-boxes (i.e. Sy). We find from
(3.10) that overall this process increases the chance (i.e. F;) that the next Np
DnaA-ATP molecules (i.e. Np = 4) will bind to the replicon at oriC, resulting in

the transition of the replicon to the next state.

3.3.4 Coupling the DNA Replication Module to the Whole-Cell

Model

We couple the model of DNA replication with the previously developed
whole-cell model through the following four key dynamical processes which

are schematically depicted in Figure 3.2 and discussed below:

1. The rate at which replication forks move along the DNA molecule, which

is proportional to the rate of M3 synthesis in Figure 3.5.

2. The active DnaA protein is produced by constitutive protein synthesis
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(proportional to the rate of synthesis of M; in Figure 3.5).

3. The active DnaA-ATP protein is regenerated by membrane phospholipids
with acidic head groups, which can catalyze the rapid release of
nucleotides from DnaA, rejuvenating the ATP form from the ADP form

(dependent on the value of P, in Figure 3.5).

4. We link the inactivation of DnaA-ATP by conversion to DnaA-ADP due to

the RIDA process to time-dependent changes in M; (Figure 3.5).

When writing the rate equations for the new module, we follow a general
approach of the approximation of reaction rates and the selection of model’s
parameters previously introduced and discussed in the works (Domach et al.,
2000; Browning et al., 2004). The detailed descriptions of reaction rates and
kinetic parameters are encoded in the model’s SBML representation, which is

available upon request.

(1) We begin with the mathematical description of the moving replication
forks. Let 2, = 1 — y; be defined as the position of the k' fork, with respect
to oriC. We first note that concurrent initiation of DNA replication occurs
at all oriC sites present in the cell once per cell cycle (Kitagawa et al., 1998).
Therefore, the dynamical changes in coordinate z;, moving along the replicating
chromosome can be modeled by linking the monotonic changes in xj(¢) to
the monotonic change in the fraction of newly synthesized DNA mass (i.e.

Mpna(t)) per replicating chromosome using rate law (3.11).

dZL'Z' 1 1 dMDNA

dt ~ N, Mpna dt

(i =1,2,3) (3.11)
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Figure 3.5: General overview of the Cornell Escherichia coli model. Note: Not all
reactions and regulation information are depicted. Species Mj is the
replicating chromosome. For a detailed discussion of the coupling
between the original E. coli model and the new DNA replication
module, please see Section 3.3.4 and Figs. 3.1 and 3.2. Solid lines
represent pseudochemical reactions. Dashed lines represent the flow
of information. Other species: A; - ammonium ion, A, - glucose,
P, - amino acids, P» - ribonucleotides, P; - deoxyribonucleotides,
P, - membrane precursors, M, - protein, Mypr; = immature stable
RNA, Msgra - mature stable RNA, M; - DNA, M, - cell envelope,
M; - glycogen, PG - ppGpp, E1 - enzymes for conversion of P, to
Ps;, By & L5 - enzymes for cross-wall formation and cell envelope
synthesis. * indicates species that are external to the cell. Figure
adapted from (Domach et al., 2000; Nikolaev et al., 2006).
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Here ¢ is time, N, is the total number of replicating forks, Mpy 4 is the mass of
the replicating chromosomes, and dMpy 4/dt is the rate of DNA biosynthesis as
described in (Domach et al., 2000).

(2) We model the rate of DnaA biosynthesis (Vpnq4) by coupling it with the

rate of the total protein biosynthesis (i.e (dM;/dt)s) as in (3.12):

anaA : fGD . dMl

N Naoear, g )
(1—|—a- ?\?EM_FB' A]\?];,]\I) dt

VDnaA = S (3 12)

In (3.12), kpnaa is the kinetic rate constant for DnaA synthesis (Browning
et al., 2004). Parameters o and [ represent noncompetitive autorepression of
DnaA biosynthesis as discussed earlier. We use o = 2 and 3 = 0.02 (Browning
et al., 2004). Ratios Narpa /Ny and Nappar /Ny are the fractions of medium
affinity DnaA boxes occupied by DnaA-ATP and DnaA-ADP, respectively. The
formation of mRNA transcripts necessary for the biosynthesis of total protein
(i.e. M;) was discussed in detail in our previous work (Domach et al., 2000;
Laffend and Shuler, 1994b). The time-dependent value of f;p in (3.12) is defined

by formulas:

dnaA
fop = (3.13)

~ Totalgenes’

Totalgenes = Nenrom - DN Agenes - (1 + Forky +2 - Forky +4 - Forks) (3.14)

Here dnaAcp is the total dnaA gene dosage calculated for all replicating

chromosomes at time ¢, T'otalye,.s is the total number of all genes in all N o,
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synchronously replicating chromosomes, DN A5 is the number of genes in

one E.coli chromosome, DN Acgenes = 4405.

(3) The rate expressions for the membrane-mediated regeneration of free

DnaA-ATP from free DnaA-ADP is given by (3.15):

Kreg - PaJV
(Kreg + Pa/V)

‘/7'eg = : DnCLAADP,F (3.15)

Here DnaAsppr is the number of free DnaA-ADP molecules (i.e. not
bound to DNA), k,., is the kinetic regeneration rate constant, K,., is the
saturation constant for membrane lipids, and P,/V is the cellular concentration

of envelope precursors (Domach et al., 2000).

(4) We describe the rate of RIDA mediated inactivation of DnaA-ATP
molecules using the formula:

kinact dMl
(1 + DnaAADP,F/Kinact) dt ‘

(3.16)

V;nact:

Here k;,,.: is the kinetic rate constant of the RIDA inactivation, Kj,,.. is the

noncompetitive inhibition constant for RIDA by free DnaA-ADP molecules.

3.3.5 Model Implementation and Simulation

The updated model is available in the Systems Biology Markup Language
(SBML). The SBML version of the model contains 33 species, 42 reactions, and
over 30 discrete events. Model simulations reported here were performed using
SloppyCell (Gutenkunst et al., 2007), a software environment for simulation

and analysis of biomolecular networks written in the Python programming
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language. All model simulation results presented here are generated by
integrating the model from an initial condition until a stable cell-division limit
cycle is reached (Nikolaev et al., 2006). It is common to study how bacterial
behavior changes at different steady-state growth rates, which is controlled by
varying the external nutrient concentration. In the simulation results presented
in Figure 3.6, where growth rate is varied, the actual control parameter is the
external glucose concentration. Growth rate can also be used as a reporter of
the effect of varying a particular parameter, as in Figure 3.7. The original model
corresponds to a single cell of E. coli B/r growing at steady-state in a constant
chemical environment (Domach et al., 2000), but it has been compared to
other strains and posed as a generalized model of a chemoheterotrophic bacterial

cell (Browning and Shuler, 2001; Nikolaev et al., 2006).

3.4 Results and Discussion

Here we compare the model predictions to experimental data from the literature
and other models. The current base model is for glucose limited growth of E.
coli B/rA growing in a constant chemical environment (i.e. a chemostat), and can
achieve growth rates up to 1.0hr~!. Unfortunately, it is difficult to find extensive
data for chemostat cultures, as most experiments are performed in batch culture.
The exponential phase of batch culture is analogous to steady-state continuous
culture, as both modes correspond to balanced growth, where all the population
averages of the chemical species in the culture increase at the same rate. The best
available data for comparison is often not run at precisely the same conditions as
the model. Specifically, the growth rate is varied by changing the carbon source,

and via nutrient supplementation (e.g. with yeast extract), whereas in the E. coli
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Figure 3.6: Growth rate, p,, vs. external glucose concentration, A2.,;. The
growth rate can be directly controlled using the external glucose
concentration, which is a control variable in the laboratory.
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model, growth rate it is varied by changing the concentration of glucose as the
sole carbon source. We make the comparison to this data in Sections 3.4.2 and
3.4.3 with the caveat that the conditions do not correspond exactly to those of
the model, but some sensible conclusions can still be inferred in regard to DNA

replication initiation using growth rate as a reporting variable.

3.4.1 Cell Growth Rate as a Function of DnaA Binding Box

Concentration

The matter of primary importance for a whole-cell bacterial model is that it
predicts a stable cell-division cycle for a variety of input conditions. Figure
3.6 shows the growth rate as a function of input external glucose concentration.
Each point on the curve in this figure represents a separate model simulation,
where the external glucose concentration is set, and then a steady-state cell
division cycle is achieved, such that the average cell properties (e.g. growth
rate) can be calculated. By calculating the growth rate for a range of values of
a particular parameter, we can quickly evaluate how that parameter affects the

cell.

To evaluate the importance of the DnaA box concentration along the
chromosome, we performed simulations where the DnaA Box distributions (3.2)
are scaled over a logarithmic range. This scales the total number of boxes
available to bind DnaA, while maintaining the same quadratic shape to the
distribution. The simulation results are shown in Figure 3.7, where we report
results in terms of the total number of boxes in a scaled distribution. Reducing

the number of medium (M) and low (L) affinity boxes down to 1 has very little
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effect on the cell’s growth rate. Reducing the number of high affinity (H) boxes,
however, causes a disruption in the cell’s ability to achieve a stable growth rate.
If the concentration of boxes is instead increased, we see that for the H-, and
M-boxes the growth rate plateaus and then reaches a slightly higher maximum,
before dropping as the box concentration is increased. Over the range of L-box
concentrations considered, there is no observable change in the growth rate.
Recall that the total number of H-, M-, and L-boxes found in E. coli are 9, 94,
and 515496, respectively (see Section 3.3.2). We observe that nature has selected
an H-box concentration just above the minimum for which a stable growth
cycle is achievable. The cell sees no benefit for moderate increases in the H-box
concentration above 9 total boxes. A very large increase in the box concentration
for H- or M-boxes can actually have a negative impact on cell growth. This is
because the extra binding boxes actually titrate DnaA away from the cytoplasm
so frequently that it is not present in sufficient quantities to initiate replication.
While it would be challenging to introduce a large number of DnaA boxes into
the E. coli chromosome, it should be possible to introduce a high-copy number
plasmid into the cell with many copies of the DnaA binding boxes. This method
could be used to experimentally confirm the effect of additional titration on

DnaA mediated replication initiation.

3.4.2 DNA Replication Timing

Figure 3.8 shows the model prediction of the length of the C period (the time
required for the DNA replication fork to proceed from the oriC' to the terminus)
for our E. coli model with the new deterministic DNA replication module

compared to a variety of E. coli data compiled by (Helmstetter, 1996). Predicting
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Figure 3.7: Growth rate, p, vs. the total number of DnaA binding
boxes for high-affinity (H-Boxes), medium-affinity (M-Boxes), and
low-affinity (L-Boxes) DnaA binding boxes. o: H-Boxes, LJ: M-Boxes,
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C period, hr
w

Figure 3.8: C period vs. growth rate. Data comes from a variety of sources
compiled in (Helmstetter, 1996). Circles - data compiled for E. coli
Br/A strains. Squares - data compiled for E. coli Br/K strains.
Triangles - data compiled for E. coli Br/F strains.

a whole-cell model capture this behavior.

There are conflicting reports about the relation between cell size and the
timing of initiation. The term ‘initiation mass” was introduced as a way to
parameterize the state of the cell at initiation (Donachie, 1968; Mahaffy and
Zyskind, 1989). Early experiments showed that the cell will initiate DNA
replication at a nearly constant initiation mass per number of origins, except

at low growth rates (Donachie, 1968; Mahafty and Zyskind, 1989). This is
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due to a still unknown mechanism (Herrick et al., 1996). Other groups have
reported that the initiation mass does vary continuously with growth rate at
growth rates below 1.0 hr~! (Herrick et al.,, 1996; Churchward et al., 1981).
However, there has been evidence for the opposite trend, with a monotonically
decreasing initiation mass as the growth rate is increased (Wold et al., 1994). The
discrepancy in experimental data could be due to one of two factors. First,
the experimental growth rate is varied by changing nutrient supplements (e.g.
yeast extract) rather than by varying the glucose concentration alone, as in
our model. This is a common way to vary the growth rate in culture, but it
means that multiple control factors are being varied simultaneously. Secondly,
it is possible that a correlation between the initiation mass and replication
phase entry was established, rather than a causative relationship (Boye and
Nordstrm, 2003). To our knowledge the initiation mass in E. coli has not
been measured in continuous culture using only the glucose concentration as
a control variable, which would be the most direct experimental analogue to
the model presented here. Our model is based on reasonable mechanisms
for DNA replication, and predicts that the initiation mass per origin increases

1

approximately threefold as the growth rate increases steadily from 0.2hr~" to

1.0hr~! through glucose control. This agrees reasonably well with Figure 1 of
Churchward et al. (Churchward et al., 1981), which predicts that in the E. coli B/r
strain the initiation mass will nearly double as the growth rate increases from
~ 0.3hr~! to ~ 1.0hr~!. This observation supports the idea that while initiation
mass is a useful tool for parameterizing initiation timing, it does not directly

control it.
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3.4.3 DnaA Concentration

The model prediction of average DnaA content at varying growth rates was
compared to the experimental data from Hansen et al. (Hansen et al., 1991a)
and Chiaramello et al. (Chiaramello and Zyskind, 1989). At a low growth
rate (~0.4hr~!), the model predicts an average total DnaA concentration of
600 monomers/cell, which overestimates the corresponding experimental data
measurements of 330 (Hansen et al., 1991a) and 74 (Chiaramello and Zyskind,
1989) monomers/cell. However, at a higher growth rate (~1.0hr '), the model
predicts an average DnaA concentration of 850 monomers/cell, which better
matches the experimental measurements of 700 (Hansen et al., 1991a) and
803 (Chiaramello and Zyskind, 1989) monomers/cell. Overall, our model
predictions better match those in Table 2 of Hansen et al. (Hansen et al., 1991a),
where they explain that in contrast to the experiments done by Chiaramello et
al., their data was collected in cultures that had been in steady-state exponential
growth for more than 10 generations (Hansen et al., 1991a). Similarly, our model
represents cells growing in balanced growth conditions for many generations
(i.e. steady-state), and we find it striking that the data measured after a longer

period in exponential growth falls closer to our model predictions.

To our knowledge a study where DnaA concentrations are measured in a
steady-state chemostat has not been performed; however, we find the behavior
of free DnaA-ATP during the division cycle in the deterministic model is in
qualitative agreement with the results of Browning et al. (Browning et al.,
2004). Specifically, after the initiation of replication, the number of free DnaA
monomers per cell rapidly increases as they are flushed off of oriC. This

is followed by a decrease in free DnaA-ATP (i.e. an eclipse period) due to
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increased binding to the chromosome as the DnaA boxes are replicated. Both
the deterministic model presented here and the stochastic model in (Browning

et al., 2004) predict similar DnaA dynamics.

3.5 Conclusions

Synthetic biology asks the experimental question of what we can manipulate
in a cell, and how the organism will respond to those manipulations. To
help establish a method for answering this question computationally, we show
here, for the first time, that a deterministic model of DNA replication in E.
coli can be constructed that both incorporates explicit genomic data, and is
integrated into a computer model that accounts for metabolism, cell expansion,
and cell division. Other deterministic models of DNA replication are not
integrated into a complete cell model that responds explicitly to changes in
nutrients. The model presented here demonstrates one way to explicitly link
DNA sequence information to systemic physiological behavior. Such a link is
essential for the progress of synthetic biology. Our model suggests, for example,
that the concentration of DNA binding boxes on the chromosome is critical to
determining cell growth and behavior. We propose that by introducing a high
copy plasmid with DnaA binding boxes, that the growth rate of E. coli may

decrease due to an overwhelming draw on the free DnaA protein.

Through studying models that simulate the link between the genome
and physiology, we can not only test our existing hypotheses about cellular
biology, but also make novel predictions that make use of the now abundant

resources of bioinformatics. The predictions of this model are nearly identical
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to those from our previous model using a stochastic description of DNA
replication (Browning et al., 2004). Because the deterministic model is less
computationally expensive it will be preferred for most applications. Key
factors in the success of the deterministic model are the natural robustness
of the replication mechanism and the use of the appropriate monotonic
function to correctly identify the moment of replicon formation. Further, this
model demonstrates the hybrid-modular nature of this modeling approach as
described elsewhere (Shuler and Domach, 1983; Nikolaev et al., 2006; Shuler,
2005; Castellanos et al., 2004).
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CHAPTER 4
A GENOMICALLY COMPLETE MINIMAL CELL MODEL

4.1 Abstract

A fully functional cell model with explicit genomic information that mimics
many details of cellular regulation has been built. This Minimal Cell
Model (MCM) allows an engineer to design experiments that probe the cell’s
behavioral response to environmental and genetic manipulations. It also serves
as a platform for the evaluation of candidate minimal gene sets and for the

design of more complicated cell models.

In this modeling framework, a cell consists of:

e Compartments

e Species

e Parameters

e Reactions

e Assignment Rules
e Rate Rules

e Algebraic Rules

e Events

e Constraints

e Functions

e Genetic Loci, Genes, and Gene Clusters

99



With the exception of genes and gene clusters, all of these structures
are based on the corresponding structures in the Systems Biology Markup
Language (SBML) (Hucka et al., 2003, 2008). Genes and Gene Clusters are data
structures that implement instances of the more basic data structures based on
SBML. Specifically, creating a new Gene object in the model will cause Species,
Reactions, and Rules that correspond to that gene’s RNA and protein products

to be created automatically.

This chapter explains what each structure is and how it affects the model
implementation and simulation. Examples from the MCM are provided.
Furthermore, a method for estimating rate and saturation parameters for

reaction processes in the cell is described.

The structures listed above are used to define the parts of a cell model
based on input criteria. They are not useful for describing the physiology
of the cell; i.e., how the structures relate to one another. For example, DNA
replication, RNA transcription, and protein translation are all conceptually
separate processes in the model, but practically speaking all of their activities
are described in the same lists of assignment rules, rate rules, reactions, and
other “cell” structures when the cell model is created. Therefore, this chapter
also describes the conceptual fragments of the MCM (i.e., the cell’s modules),

including:

Transport - The movement of nutrients into the cell cytoplasm across the

plasma membrane via transport reactions.
DNA Replication - The initiation, process, and termination of DNA synthesis.

Transcription - RNA synthesis from a DNA template.
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Translation - Protein synthesis from RNA templates.

Demands - The automatic tracking of limiting species in pseudo reactions that

consume several reactants (e.g. synthesis of protein).
Geometry - Cell shape as determined by the cell mass and volume.

Gene Set - The genes that are present in the cell, which are determined by the
combination of the minimal gene set proposed by Gil et al. (2004) and
supplements that have been added to make the gene set physiologically

complete.

The overall modeling strategy used here is based on that originally used by
Shuler and Dick (1979) and Domach et al. (1984). Those methods were extended
more recently (Browning and Shuler, 2001; Browning et al., 2004; Castellanos
et al., 2004, 2007; Nikolaev et al., 2005; Atlas et al., 2008). The new model is a
system of discontinuous differential algebraic equations which are solved using
the SloppyCell (Gutenkunst et al., 2007a) software package. Many significant
updates have been made to the original modeling approach to facilitate creating
a much larger model than has been attempted previously. Naming conventions
related to the model variables and parameters are discussed in Appendix A,
and the full model simulation package along with lists of parameters and
equations will be made available at the Minimal Cell Model website discussed

in Appendix L

4.2 Introduction

Although an organism’s genome, the blueprint of life, encodes all primary

information necessary for cellular organization and function (e.g. networks
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of interacting biomolecules, regulation, kinetic rate constants, etc.), a more
explicit relation of static genomes to dynamic cell physiology and population
response is required to take full advantage of thousands of completely
annotated genomes (Overbeek et al., 2005; Shuler, 2005). Specifically, a better
understanding of how a phenotype evolves from an organism’s genome and
is affected by dynamic changes in the external environment still represents
a significant challenge for modern biology. In this respect, 2D-annotations
of complete genomes in terms of accurate stoichiometric reaction networks
have recently become available (Palsson 2004) and are now used to provide
instant phenotype snapshots of cellular metabolism under fixed external
conditions (Palsson, 2006). However, such static snapshots still cannot
predict the network’s dynamic control, regulation, and systemic response
from the collection of functional units (i.e. reactions) and their individual

stoichiometries.

A “minimal cell” is a bacterium with the minimum number of genes
necessary to grow and divide in some optimally supportive culture
environment. The overall goal of this research is to develop a genomically
detailed mathematical model of such a cell, which is referred to as a Minimal
Cell Model (MCM). The model is constructed and simulated based on the
coarse-grained modeling approach developed by the Shuler group (Shuler
and Dick, 1979; Domach et al., 1984; Browning and Shuler, 2001; Browning
et al., 2004; Castellanos et al., 2004, 2007; Nikolaev et al., 2005; Atlas et al.,
2008). This method was originally used to make a coarse-grained model of
Escherichia coli (Shuler and Dick, 1979; Domach et al., 1984). The MCM'’s gene
set is determined by the combination of the minimal gene set proposed by

Gil et al. (2004) and supplements that have been added to make the gene set
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physiologically complete (see Section 4.20).

The new model is a system of discontinuous differential algebraic
equations (DAESs) that is solved using the SloppyCell software package for
Python (Gutenkunst et al., 2007a). The fundamental basis of the modeling
approach is that chemical species which have similar dynamics can be
aggregated into single model components. Changes in the masses of these
components over time are governed by pseudochemical reactions between
them. The rates of pseudochemical reactions are based on proposed kinetic
relationships that capture the major dependencies of the process being modeled.
The largest departure from this method taken in the current research is that the
chemical species are significantly more detailed, and many more species are

tracked.

In the new modeling framework, a “cell” is composed of compartments,
species (i.e. chemical species), parameters, reactions, assignment rules, rate rules,
algebraic rules, events, constraints, functions, and genes. These structures are
defined in detail in Sections 4.4-4.12. Table 4.1 lists the number of each modeling

structure included in the MCM.

These structures are each defined in “modules” that describe various
physiological processes in the cell (e.g. DNA replication or central metabolism).
Each module is defined in a file that has definitions for parameters, species,
reactions, etc. related to that module’s function. The modules are discussed in

detail in Sections 4.13-4.20.
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Table 4.1: Model structures used in the Minimal Cell Model. With the exception
of genes and gene clusters, all the modeling structures are analogous
to their SBML counterparts (Hucka et al., 2003). Rate, saturation, and
inhibition parameters are can be set to values from the literature, or
estimated using the procedures described in Section 4.7.3. While there
are 241 identified coding loci in the model, only 102 are modeled as
single genes. The remaining 139 are lumped into groups that have
closely coupled function and dynamics. These lumped groups are
here named “gene clusters” (Section 4.12).

Model Structure Count Examples
Compartments 4 Cytoplasm, cell membrane, whole cell, medium
Chemical Species 408 Glucose-6P, alanine, mRNAs, proteins
Reactions 570  Fructose-6P synthesis, CTP synthesis
Rate Parameters 570  Mass action or Michaelis-Menten rate constants
Saturation Parameters 581  Michaelis-Menten like saturation parameters
Inhibition Parameters 25 Michaelis-Menten like inhibition parameters
Rate Rules 1 Methylation state of chromosome
Algebraic Rules 1 Cell width (CW)
Events 36 DNA replication initiation, cell division
Constraints 408  Each species mass must be > 0
Genes 241  Protein and stable RNA coding regions
Single Coding Genes 102 dnaB, pgi, etc.
Gene Clusters 19 replisome, etc.
(Genes in Clusters) 139  Ribosomal proteins, dnaF, etc.

4.3 Conventions and Assumptions

Making a chemically and genomically detailed model of a cell requires a myriad
of assumptions which may not be standard amongst smaller-scale submodels
of metabolic processes. In this section the conventions and assumptions that
apply to the rest of the equations and modeling structures in this chapter are
described. Many of these assumptions are based on those made by (Domach

et al., 1984).
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The masses calculated in the simulation correspond to the dry weight of
the corresponding feature of a real cell. Therefore, the “total mass” of the
computer cell corresponds to the “dry weight” of a cell in the lab (i.e. where

all water has been removed).

Small inorganic cellular components (e.g. phosphate, magnesium) are
available in excess and never limit growth rate or extent. These compounds,
therefore, do not need to be explicitly accounted for. In some cases one of these
species must be explicitly included in the stoichiometry of a reaction to have
the reactants and products be “balanced”. Those species are not produced or
consumed by the reaction, because it is assumed that regardless of the reaction

rates their concentrations are in excess and not rate-limiting.

The cytoplasm is a well-mixed environment. As such, it is assumed that

intracellular reactions are not limited by diffusion.

The densities of the cytoplasm and cell membrane are assumed
constant. Because the volume of the cell membrane and cytoplasm can
vary independently, it is possible for the net density of the cell to vary (in
practice it can experience minor fluctuations, but stays relatively constant once
steady-state is reached). The volume of a compartment is related to its mass by

a constant density.

Cell division results in two identical daughter cells and occurs
instantaneously when the septum formation is complete. Therefore, when

cell division occurs, the progress of a single daughter cell is tracked.

The cell is in a chemical medium with constant composition, or the

cell population is initially low enough that the change in concentration of
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nutrients is negligible over the course of the simulation considered. In
addition, it is assumed that the reactor medium is well-stirred, so that the cell
is constantly exposed to the same concentration of nutrients. The medium
contains an excess of all nutrients that the cell needs to survive. Furthermore,

all cell waste products are diluted to near zero and cannot be inhibitory.

The cell is in an anaerobic environment. Because the minimal cell has
no genes for aerobic respiration (see Section 4.20.4), it is assumed that the
environment is anaerobic to ensure the generation of reactive oxidation species
(White, 2000, chap. 14). However, without an electron transport chain, the
minimal cell may have a reduced ability to generate reactive oxygen species,

which could make it slightly aerotolerant.

This model represents an “average” cell, and chemical species with small
numbers of molecules can be deterministically rather than stochastically. The
Shuler group has presented examples of how to reconcile differences between
stochastic and deterministic predictions in bacterial cell models (Browning et al.,
2004). All cells in the population have the same composition at the same point

in the division cycle.

The cell is spherical in shape. This is based on the lack of significant
cytoskeletal proteins that would help the cell maintain another shape. However,
the simulation has also been done assuming a rod geometry and the change

from one geometry to the other is straightforward.
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4.4 Compartments

A compartment is a space where chemical species are located. The MCM
currently has four compartments: cytoplasm, cell membrane, cell, and
medium. All model volumes are in units of ym®. The volumes of the
cellular compartments are calculated using the constant density assumption.
Specifically, the densities of the cytoplasm and cell membrane are assumed to
be constant, and their values are based on experimental measurements in E.
coli (Domach et al., 1984). For more detail on the calculations for cell geometry,
see Section 4.19. The natural units for volume at the size scale of a bacterial
cell are um?3, and that is used in this dissertation. Concentrations in the cell
are assigned units of %5, where 1 pg =1 x 10712 g, as those are the natural
length and size scales for the MCM. Medium concentrations are referred to in
ﬁ. Note that 1 % =1 ﬁ, and thus the units used to refer to internal and
external concentrations in the MCM are equivalent. The initial volume of each
compartment depends on its initial mass, and the calculation of initial mass is

discussed in Section 4.5.1.

4.4.1 Cytoplasm (V)

The cytoplasm is the compartment where most metabolic reactions take place. It
is assumed that the cytoplasm is well-mixed. The volume of this compartment

is calculated using the assignment rule in Equation 4.1.

Vo = (4.1)
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In Equation 4.1, M is the (dry) mass of the cytoplasm, and p.,, is defined as:

Pyt = 0.2584 2
pm

The value for p,, is the same as that used by Domach et al. (1984) for modeling
E. coli. Because M is the sum of the masses of all the cytoplasmic species, the
volume depends heavily on the initial masses of all the cell components. The

initial volume of the cytoplasm in the MCM is set to 4.90 x 107! ym?.

4.4.2 Cell Membrane (V)

The volume of the cell membrane is calculated using the assignment rule in

Equation 4.2.

Vi = My (4.2)

Pmembrane

In Equation 4.2, M, is the mass of the cell membrane, and p,.emprane is defined

as:

Pmembrane = 0.5526 p_gg
pm

The value for pmemprane is the same as that used by Domach et al. (1984) for
modeling E. coli. In that work, Domach also included a factor prot s, to account

for a protein-free basis of cell-membrane density. Because the MCM explicitly
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tracks the masses of lipids and proteins in the cell membrane, the protein free

basis for measurements is no longer necessary.

The initial value of M,, and therefore of V);, depends on the initial values
of the cytoplasmic species. Literature values for cell membrane thickness lie
in the 5-10 nm range (Singer and Nicolson, 1972; El-Hag et al., 2006), so the
membrane is assumed to have a thickness of 10 nm (0.01 gm). The membrane
requires a sufficient mass of phospholipids to fully encompass the volume of
the cytoplasm as calculated by Equation 4.1. Taking this into account, the initial

volume of the cell membrane compartment is set to 3.11 x 1072 pym?.

443 Cell (V)

The volume of the whole-cell is calculated using the assignment in Equation 4.3.
V represents the total cell volume and is the variable that should be compared

to experimental measurements of cell volume.

V=Ve+Vy 4.3)

The initial size of the whole cell, V, in the MCM is set to 5.21 x 107! pym?.

44.4 Medium

The medium is the unbounded external environment from which the cell
obtains its nutrients. Because the MCM corresponds to a single cell growing

in a steady-state environment, it is assumed that all external compounds are
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available at constant concentration. The model cell is provided with an excess
of all compounds that are necessary for it to grow and divide given its minimal
genome. Finally, because the cell does not have the genes necessary for aerobic

respiration, it is assumed that the medium is anaerobic.

The 38 compounds present in the medium are listed in Tables D.1 and D.2
in Appendix D. Concentrations proposed for defined media for Mycoplasma
strain Y (which is similar to M. mycoides) for glucose; free bases A, G, and U;
some cofactor precursors; and the amino acids were used to define the medium

composition in the MCM (Rodwell, 1969).

No suitable reference for the concentration of folic acid, fatty acids,
pantothenic acid, or inorganic ions was available, so their initial external
concentrations were set to 1 x 1073 ﬁ. Because the external environment
is assumed to be constant, changes in the concentrations of external nutrients

could be compensated for by changes in the rate constants for transport

reactions. Thus, the particular values for the MCM are somewhat arbitrary.

4.5 Chemical Species

A species (i.e., a chemical species) is a pool of a particular reacting chemical in the
model. There are 408 distinct chemical species in the MCM, and 359 of those
are dynamic (i.e. nonconstant). The distribution of species types is presented
in Table 4.2. All species inside the cell (e.g. in the cytoplasm or in the cell
membrane) are measured in units of mass (pg), while all species in the external
medium are measured in units of concentration (% ). Note that the number of

proteins given in Table 4.2 is greater than the number of mRNAs because several
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protein products have alternate forms. For example, the free cytoplasmic and
integral membrane forms of a transporter protein are counted as two distinct

species in the MCM.

Because some genes are lumped into gene clusters (see Section 4.12), the
number of proteins and mRNAs tracked explicitly in the model is less than the

total number of genes in the minimal gene set (see Section 4.20).

4.5.1 Species Initial Conditions

A chemically detailed model of a bacterial cell must have the initial mass of
all its chemical species specified. For many chemical species, even average cell
cycle values are not known, let alone detailed concentration information as a
function of the cell cycle progression. To obtain initial conditions for the MCM,
we make use of data for groups of chemical species published for E. coli and
make assumptions about how these groups are subdivided in the hypothetical
cell (Neidhardt, 1996). Because there is no experimental analog for a minimal
cell, we propose that using composition data measured in E. coli is a valid
tirst-approximation because it will have a similar chemical make-up to other

chemoheterotrophic bacteria.

To derive initial values for chemical masses, the following procedure

was used (M. Domach, Carnegie Mellon University, personal communication,

October 17, 2007):

1. The minimal cell is assumed to have an average dry mass of about 0.2 pg,

which is about 75% of the dry weight of E. coli (Neidhardt, 1996).
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2. Data for the average composition of protein, mRNA, tRNA, rRNA, DNA,
lipids, and metabolites in E. coli was gathered (Neidhardt, 1996). These

weight fractions were assumed to be the same for the MCM.

3. Cell age is defined as age = t/7p, where t is the time since the last division,
and 7p is the steady state doubling time. A steady-state growth rate s,
is also defined. The age distribution, ¢(age), for a culture in continuous
steady-state growth with a constant 7, is given by Equation 4.4 (Powell,

1956).

¢(age) = 2uge_1n(2)'age (4.4)

To find the average age of a culture (i.e. the 50th percentile), Equation 4.5

is solved for agesxp.

/a9650¢(ag€) da = 0.5 (4.5)
0

This yields that the average age of a synchronized, exponentially growing

cell population (i.e., ages) is approximately 0.415.

4. Assuming the cell is in balanced growth, the population weighted average
mass of a chemical species X in the cell will correspond to when the cell is
41.5% of the way through the division cycle. Using Equation 4.7, the initial

mass X is calculated from the average mass (.X).

<X> — XO 6(ln(2)~0.415) (46)

(X) =133 X, (4.7)
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5. The average mass of each of the protein, mRNA, tRNA, rRNA, and
metabolites groups was set to be equal to the mass fraction calculated in
step 2 times the total mass selected in step 1. Then, the mass of at the start

of the cell cycle was assumed to be the average value divided by 1.33.

6. The initial mass of DNA was set to the mass of one complete chromosome,
which was based on the mass of the sequence of the minimal gene set (see

Section 4.5.7).

7. The initial mass of membrane lipids was set to be adequate to “envelope”

the cytoplasm of the cell (see Section 4.5.5).

The average component masses used to calculate initial conditions are
summarized in Table 4.3, and their initial relative magnitudes are shown in
Figure 4.1. These proportions agree with the E. coli data that they are derived
from. Once the component masses were estimated, the masses of individual
chemical species were initialized as described in Sections 4.5.2 - 4.5.7. Table E.1
in Appendix E presents initials masses of each chemical species in the MCM.
Note that for certain chemical species involved in Demand objects (Section 4.18),
the initial condition is shifted by a small amount (<1%) to ensure that one of the

chemicals is initially limiting.

This estimate of initial conditions for each chemical species is instrumental
in determining the reaction rate constants in the MCM (see Section 4.7.3).
Any information regarding precise average values for particular chemicals in
a bacterial cell would yield a more authentic representation of cell behavior.
The final simulated birth composition is found by letting the cell establish
steady-state replication and differs from this initial estimate. The initial estimate

has to be sufficiently realistic to yield a stable behavior in the model cell.
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Table 4.3: Initial conditions of groups of macromolecules in the Minimal Cell
Model. The average masses from E. coli are based on values reported
in (Neidhardt, 1996). The average mass in the MCM is calculated
by assuming that each component accounts for the same mass
percentage in E. coli and the minimal cell, but that the total average
mass of the minimal cell is 0.2 pg. Note that the actual average value
of DNA used in the MCM is based on its genome sequence, not on the
data from E. coli presented in this table. In the current model the mass
of the chromosome is Mcyr ~ 3.77 x 107 pg. Initial values for the
start of the cell cycle were calculated as described in Section 4.5.1.

Component Avg. mass in E. coli (pg) Avg. mass in MCM (pg)

Protein 1.56 x 107! 1.20 x 1071
rRNA 4.77 x 1072 3.68 x 1072
tRNA 6.33 x 1073 6.33 x 1073
mRNA 2.10 x 1073 1.62 x 1073
DNA 9.00 x 1073 6.95 x 1073
Lipid 2.60 x 1072 2.01 x 1072
Metabolites 1.00 x 1072 7.72 x 1073
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Figure 4.1:

Relative initial masses of lumped species groups in the Minimal Cell

Model. M, is protein, M, is total RNA, My, is mRNA, M; is DNA,
My is cell membrane (protein and lipid), PE is membrane lipids,
Metabolites are all the precursor molecules including nucleotides,
amino acids, and sugars.
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4.5.2 mRNA and Protein

The minimal cell initially has 1.22 x 107® pg of mRNA per cell. The mass of
each mRNA species was calculated by taking the desired total initial mass of
mRNA and dividing it up evenly amongst the mRNA species for all protein
coding genes in the cell. For gene clusters producing a single coarse-grained
mRNA species, the initial mRNA amount was weighted by the numbers of
genes represented in the cluster. See Section 4.12 for more information on gene

clusters.

Initial masses for each protein were calculated similarly, with the exception
that membrane and ribosomal proteins were initiated before “free” proteins.
The membrane protein content was based on the experimental observation that
proteins account for 50%-80% of the weight of membranes in mollicutes (Korn,
1969; Razin, 1975). A 50/50 split of lipid and protein in the membrane is
assumed because the minimal cell will have fewer proteins than a naturally
occurring cell. The total initial mass of protein in the cell was set to

9.03 x 1072 pg.

4.5.3 tRNA

The minimal cell initially has 4.75 x 107 pg of tRNA per cell. In the MCM,
tRNA can exist as a free species or in a bound species with its corresponding
amino acid. To set the initial conditions for tRNAs, it was assumed that each
free and bound species had the same initial mass of tRNA (subtracting out the

mass of amino acid attached to the tRNA).
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4.54 rRNA

The minimal cell initially has 2.76 x 1072 pg of rRNA per cell including 23S
rRNA, 165 rRNA, and 55 rRNA. However, it is unclear how much of this rRNA
exists in free form separate from any ribosomes in nature. As a starting point,
it was assumed that the free immature and mature rRNA species each have six
times the initial mass as each free mRNA. The remainder of the initial mass of

rRNA is added to ribosomes.

4.5.5 Lipids

The initial amount of lipids present in the cell membrane of the minimal
cell is calculated from physical constraints on the shape and mass of the cell
rather than from the literature data. Specifically, given the density of the cell
membrane, the cell requires a minimum amount of lipid material to sufficiently

“envelope” the cytoplasm.

The membrane is assumed to be 0.01 um thick (Singer and Nicolson, 1972).
Using this thickness the volume, and therefore mass, of membrane is calculated
based on the approximate mass of the cytoplasm. For example, for a spherical

cell the volume of the membrane is approximately expressed as,

4 (CW ’

M4init = Penv * VM (49)
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where My;,;; is the initial mass of the membrane, V), is its volume, CW is the
cell width, V¢ is the volume of the cytoplasm, and d,, is the thickness of the

membrane.

The membrane is a 50%-80% mixture of proteins and lipids (Korn, 1969;
Razin, 1975). For the MCM the initial membrane protein mass is set to half
of the membrane’s mass because it is expected that a minimal cell has fewer
membrane proteins than a traditional cell. Therefore, the initial mass of PE
in the membrane is assumed to be one-half of the calculated initial membrane
mass Myn;:. The remaining membrane mass is divided amongst the membrane
transport proteins (Section 4.5.2). Septum material is generated as part of the
cell division process, and its mass (referred to as sept in the MCM) is initially set

to zero.

4.5.6 Metabolites

Metabolites are defined as all the precursors of macromolecules and cofactors
of biosynthetic reactions in bacterial metabolism. The minimal cell initially has
5.79 x 1073 pg of metabolites per cell, and these species are initialized such
that the sum of all metabolite masses is equal to the desired initial sum. This
results in an unusual initial distribution of metabolites that changes drastically
once a simulation commences based on the demand for those metabolites in the
cell. Metabolism is related to protein and mRNA synthesis as well as genome
sequence, and those nonlinear effects lead to the model compounds achieving a

new steady state once the simulation begins.

For chemicals that enter the cell via diffusion an extra low initial mass was
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selected to guarantee an inward facing concentration gradient. Specifically, the
concentration of each diffusing chemical in the cytoplasm was set to be one

tenth of the concentration in the medium.

4.5.7 Genome

The MCM'’s gene set is determined by the combination of the minimal gene set
proposed by Gil et al. (2004) and supplements that have been added to make the
gene set physiologically complete (see Section 4.20). To determine the sequence
of each genetic locus in the minimal gene set, a Python script has been written
that automatically downloads the required nucleotide sequences, along with the
corresponding protein sequences, from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) website at http: //www.genome. jp/kegg/ (Kanehisa and
Goto, 2000). This script will be included at the supplementary website described
in Appendix I. The KEGG database allows one to search for gene sequences
from a variety of organisms, and the organisms used in the search are described

in Section 4.20.7.

The genome sequence and chromosome mass are calculated from the
sequence of the minimal genome. The initial state of the model is assumed
to be just after a successful round of DNA replication and cell division, such
that the initial mass of DNA should be set to the mass of a single chromosome.
Because the minimal genome is drastically different than the genome of E. coli,
in particular in its abbreviated length, the MCM will have a significantly lower

initial and average mass of DNA than E. coli (Table 4.3).
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4.6 Parameters

A parameter is a named quantity in the model that is not a species or a
compartment. The implementation of parameters used here is based on
that described in the SBML documentation (Hucka et al., 2008). There are
constant parameters (e.g. rate constants), and nonconstant parameters (e.g. cell
width). Most of the constant parameters in the MCM are created automatically
when reactions are defined. Every reaction has a single rate constant and
one saturation parameter for every saturation chemical associated with the
reaction (these correspond to activation or inhibition terms). The nonconstant
parameters are set continuously by assignment rules, rate rules, or algebraic
rules (Section 4.8), or discontinuously by event assignments (Section 4.9).
Nonconstant parameters include gene dosages, which are set by assignment

rules as described in Section 4.16.

4.7 Reactions

A reaction governs the conversion of one set of species (reactants) into another
(products). There are 570 reactions in the MCM, and a small subset of those are

discussed here.

Reactions are defined by their stoichiometry and rate law. Stoichiometry is
based on the mass of products that will be produced when a given amount
of reactants are consumed. Rate laws in the model are written in terms of
the production rate of one of the product species (i.e., the calculated rate is

in units of mass/time of product produced per cell). All stoichiometries in
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the model are mass based. It is possible to input reaction stoichiometry on a
molar basis, but this is automatically converted to a mass basis once the reaction
object is defined. This allows us to write differential equations more easily
for species in a cell with changing volume. For reactions that consume ATP
or other phosphate donors, coupled phosphate donor consumption reactions
are introduced as part of the reaction stoichiometry. Again, these reactions
are mass based, so the consumption of ATP is always in terms of the mass of
ATP consumed per unit mass of product formed. If the product of a reaction is
specified, then the stoichiometry of that reaction is normalized according to the

mass of product produced.

4.7.1 Inputs for a Reaction Object

Rate laws for each reaction are automatically constructed based on a number of

inputs. Specifically, one can specify a reaction’s:

e stoichiometry

e rate constant

e saturation term(s)

e external saturation term(s)
e inhibition term(s)

e rate multiplier(s)

o flag(s)

e enzyme
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The rate constants are necessary for all reactions, even if they are set to 1.0.
The modeling framework tolerates unknown rate constants as well, which can
be automatically estimated using the method described in Section 4.7.3. The

units of the rate constants vary depending on the form of the rate law, but they

MasSproduct MasSproduct
time time-masSenzyme

units.

are usually in

Saturation terms are Michaelis-Menten type terms of the form:

X
(m) (4.10)

where X is the mass of chemical species X, V' is the volume of the compartment

mass

containing species X, and K is the saturation constant in —=*** units. In the
MCM, both reactants and cofactors can have saturation effects on a reaction
rate. Allowing cofactors to participate in saturation terms ensures that if there

is no cofactor, the reaction rate eventually drops to zero.

Similarly, external saturation terms are terms that account for the saturating
effect of an extracellular species on a reaction rate. These terms, which usually

only occur in transport reactions, have the form:

Xea:t
_ 4.11
(Xea:t + Ksext) ( )

where X, is the concentration of species X outside the cell in

mass
volume

units, and

mass

K scqy is the external saturation constant in —7%** units.

Reactions can also have inhibition terms of the form:
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(Kli §> (4.12)
Ty

where X is the mass of chemical species X, V' is the volume of the compartment

where the reaction is taking place, and K; is the inhibition constant 9% ynits.

volume

Multiplier and flag terms have similar effects on the rate law of a reaction.
They are simply terms that get multiplied into the reaction rate. Enzyme masses
are used as multiplier terms to encompass the effect of a changing net catalytic
activity on the reaction rate. For example, in the generic rate law presented in
Equation 4.13, E is the mass of an enzyme that catalyzes the reaction, and the

term F operates as a rate multiplier.

X
—vp B 4.1
rate Um, ( . F'S) ( 3)

Flags work in the same way as multipliers (i.e., their values are multiplied
into the rate law). However, flags can be zero-valued and are used to simulate
times when the reaction is shut off. Because they can be set to 0, their effect is

ignored when calculating rate constants.

Reactions that have a catalyzing enzyme are handled by adding a multiplier
to the rate law encompassing the effect that enzyme has on the rate.
Pseudo-reactions that depend on multiple enzymes (e.g., DNA synthesis)
use “pseudo-enzymes” whose masses represent the sum of all the enzymes
involved in that process. Sections 4.7.4-4.7.6 show examples of reactions

governing synthesis of fructose-6-P, the dATP deoxyribonucleotide, and DNA.
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4.7.2 Determination of Saturation Parameters

Saturation constants for activation terms in saturation-type rate laws were
estimated by applying a general rule of thumb that postulates that a reasonable
value for an unknown saturation constant is one twenty-fifth of its normal
intracellular concentration (NIC) (Domach et al., 1984). Similarly, inhibition
constants for inhibition terms in rate laws are estimated by applying a heuristic
that the constant will be equal to 10 times that chemicals NIC. In the MCM, the
NIC is set to the predicted average concentration of each chemical species. This
rule has been applied in previous models (Shu and Shuler, 1991; Domach et al.,

1984).

4.7.3 Rate Constant Estimation

Developing a model of this scale is complicated by lack of kinetic information
for most of the proposed reactions. One could estimate the rate constants for the
reactions in the model one at a time, but as the number of reactions increases
it becomes more difficult to select rate constants that allow simulation of a
viable (i.e. repeatedly dividing) cell. At the same time, parameter analysis
research has revealed that in many biological models, the specific values of
parameters are not as critical as their ratios to one another (Browning and
Shuler, 2001; Brown and Sethna, 2003; Gutenkunst et al., 2007b,c). For that
reason, a method to quickly estimate rate constants for coarse-grained models of
single cells growing at steady-state has been developed. The goal of developing
this procedure is not to calculate rate constants for the enzymes that could be

used in another context. Rather, the goal is to rapidly obtain a reasonable set of
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parameters that can be used to help test the plausibility candidate minimal gene

sets. This method is based on the following assumption:

Assumption: In a single cell growing and repeatedly dividing at steady-state, each

chemical species’ mass will double in the time that it takes for the cell to divide, 7.

This assumption is certainly true in an exponentially growing population of
bacterial cells experiencing balanced growth, and applying the assumption to
the single-celled model allows us to calculate rate constants for the reactions
in the model. We begin by using the doubling assumption for species X; (i.e.

Xi(tqs) = 2 - X;(0)) to write:

/ "X dt = X;(tq) — X:(0) = X;(0) (4.14)
o dt

The rate % is not constant, but for most species the mass X; will increase

monotonically until it doubles in a nearly linear fashion. We can take advantage
of this to calculate a set of approximate rate constants that are likely to resultin a
cell model that will achieve a stable cell division cycle. Specifically, it is assumed
that the rate of production of a species X is linear in the rate constants v;, and
that the nonlinear portions of the rate laws are known functions of X, f;(X),
which is approximated over the course of the cell doubling time (Equation 4.15).
Furthermore, it is assumed that each species creates a constraint on some of the

rate constants as in Equation 4.16.

Ngr

dX;

= 2 v g fi(X) (4.15)
j=0
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Ngr
Z Xi
Uy - Qg+ fj(X) Z SS; # (416)
- d
7=0

Specifically, Equation 4.16 says that the sums of all the reaction rates acting on
species i are constrained to being greater than X;(0), the mass of species i at
time 0, divided by the desired doubling time. In Equation 4.16, a scaling factor,
ss;, is introduced for certain chemical species that are under-produced using
this procedure. A value of ss; greater than 1 directs the rate constant estimation
algorithm to attempt to produce more than two times as much of species 7 before
the end of the cell cycle. For example, DNA (Mj3), which doubles its mass in a
fraction of the cell division cycle, will be under-produced using the estimation
procedure outlined here. To ensure sufficient production of DNA, ATP, and
CoA by the cell, the target accumulation rates of these species were adjusted to
obtain rate constants that resulted in a repeating cell cycle. Specifically, ss; was

set to 2.0 for DNA, and to 4.0 for ATP and CoA.

While the assumption of linearity is not true (because f;(X) is nonlinear),
by applying this assumption to the initial conditions for the MCM, linear
constraints on the rate constants for the model are obtained. This results in a
system of constraint equations on all the rate constants in the model, which can

be expressed as a matrix A. The objective function:

Ngr

for = _vi (4.17)

=1

where Np, is the number of reactions, and v; is the rate constant for rate constant
i, is introduced to frame the problem as a Linear Programming (LP) problem

with constraints A and objective function f,,;, which is minimized. The space
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of possible rate constant choices is a many dimensional space and there can be
infinitely many sets of constants that would satisfy the given constraints. The
objective function is minimized because the constraints placed on the reaction
rate constants (doubling all chemical species masses) tend to force the system to
have higher rate constants. To balance these constraints and estimate reasonably
sized rate constants, their sum is minimized. The LP system is solved using the
Python lpsolve package (Berkelaar et al., 2010). A wrapper class for Ipsolve is
included with the MCM code.

It is possible that there is some prior information available about the value
of a rate constant for a particular reaction in the model. In those cases, upper
and lower bounds on the rate constant are incorporated into the LP method.
This ability is useful in cases where, for example, a single transport enzyme
operates on several substrates. While it is not necessarily true that the transport
rate constant will be the same for all substrates, they are likely constrained to
similar ranges. Thus, to obtain an appropriate set of constants the rate constants

for transporters with multiple substrates are constrained to being equal.

The rate constant estimation procedure described above allows us to obtain
a reasonable set of parameters that can be used to help test the plausibility of
candidate minimal gene sets. The absolute values of the parameters selected
is in some sense arbitrary for an MCM (Browning and Shuler, 2001). It is of
note that the parameters estimated here will have different values if the initial
conditions of the MCM are altered. Furthermore, two similar reactions (e.g., two
protein synthesis reactions) may yield different rate constants if their products
are consumed differently in the cell (e.g., a cytosolic protein and a protein that

is transported to the membrane). This is acceptable for the base MCM as long
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as reasonable values are achieved for reactions with known biochemistry.

To ensure that the rate constant calculation procedure calculates reasonable
values, the values calculated are compared to values from bacteria that have
been measured, as in Table 4.4. For each comparison, the rate constant from the

MCM is converted to a specific activity by recognizing that,

activity = Ufm (4.18)

where E is the mass of the enzyme corresponding to v,,.

4.7.4 Reaction f6Pq

6Py is the reaction catalyzed by glucose-6P isomerase (Pgi), and it converts
glucose-6P (g6P) into fructose-6P (f6P). Because this is an isomerization reaction,
the mass of the reactant and product are the same, and each has a stoichiometric

coefficient of + 1 (Equation 4.19). The rate law for this reaction (Equation 4.20)

pg f6P
h-pg Pgi

consists of the rate constant vssp_g ( ), a saturation term for the reactant

with saturation constant Ksysp.s.¢6p (255), and a multiplier for the mass of Pgi

pm3
enzyme per cell (pg).
1-g6P —8 = 1.f6P (4.19)
—_— = Vpep.g - - Pgi 4.20
( dt ) jop, 7 (96P + Kspopsgor - Vo) / (420
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4.7.5 Reaction dATPg

dATPg is the reaction catalyzed by adenylate kinase (Adk), which catalyzes
the interconversion of adenine nucleotides. The stoichiometric coefficients for
the reaction have been normalized in terms of the product, dATP (Equation
4.21). Note that the mass-based stoichiometric coefficients on each side of the
reaction have the same sum. Thus, the chemical reaction is balanced in mass.
In the rate law for dATPg (Equation 4.22), vgarp.s is the maximum rate of the

. ATP
reaction (E?pg Nk

), Ksqarp-s-aapp is the saturation constant describing the effect
of dADP on the rate (%), Ksqarp-s-arp is the saturation constant describing

the effect of AT P on the rate (l%), and Ndk is the mass of Ndk per cell (pg).

0.837 - dADP + 1.03 - ATP —N4 > (0.87. ADP + 1 - dATP (4.21)
<d(dATP)) dADP
—_— = 2 .
dt dATPg dATP-S (dADP + KSdATP_S_dADP . Vc)
ATP
: -Ndk  (4.22)

(ATP + Ksgarp.s.arp - Vo)

4.7.6 Reaction M;_g

Mj;_g is a pseudoreaction for the synthesis of DNA from dNTP precursors. Note
that the stoichiometric coefficients of the reactants and products have the same
sum (Equation 4.23), so the reaction is balanced in mass. As a pseudoreaction,
it is catalyzed by a sum total of proteins which is simply called “Replisome”.

The Replisome consists of gene products from the dnaE, dnaN, dnaQ, dnaX,
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holA, holB, gyrA, gyrB, lig, and ssb genes. DN Ap,,;, is the mass of the most
“in-demand” dNTP species at a given time, and AT P is the mass of cellular
ATP. It is assumed that the DNA replication process depends on the energy
of the cell (Domach and Shuler, 1984), and that dependence is represented
by the ATP saturation term. The rate law is given in Equation 4.24, where
NTOT is a parameter that tracks the number of actively replicating forks

on the chromosome. 3 is the maximum rate of the reaction per replication

pg M3
eplisome- Fork

fork (h.ng 0 ), K sn13-5-DN Ap-min 1S the saturation constant describing the
effect of ANTPs on the rate (%), K sprs.s-42 is the saturation constant describing
the effect of glycolytic compounds on the rate (%), and Replisome is the mass

of the gene-cluster product corresponding to genes involved in DNA synthesis.

1.05 x 1071 - ATP .
1.00-DNA
+ 3.01 x 107! . dATP
+ 8.78 x 1072. ADP
+ 1.93x 107" - dCTP Replisome
+ 3.56 x 107*- AMP
+ 210 x 107'-dGTP
+ 201 x1072-Pi
+ 296 x 1071 dTTP
|+ 1.83x 10~* - PPi
+ 3.72x107%-H20
7
(4.23)
(dMB) ATP
il = maus -
dt ) rrsg (ATP + Ksyss.arp - Vo)
(DNApmin + KSM3-S-DNAp—mm : VC)
- Replisome - NTOT (4.24)

The stoichiometry of DNA synthesis is calculated when the cell model is
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Table 4.5: ATP consumption related to chromosome synthesis.

Process ATP Consumption Reference

Histone HupA 1 ATP per HupA molecule assumption
Helicase DnaB 1 ATP per DnaB molecule assumption based on (White, 2000)
Gyrase 2 ATP per 10 bp assumption based on (White, 2000)

Ligase 1 ATP per 1000 bp assumption

defined, based on the sequence of DNA in the cell. The model does not link
the consumption of each dNTP precursor to the position of the replication fork.
Rather, the consumption of dNTPs is executed on an average basis. Similarly,
the ATP consumption is calculated on an average basis, as described in Table

4.5.

4.8 Rules

Rules provide a means to control the values of variables in a model. The
implementation of rules used in the MCM is based on that proposed by
SBML (Hucka et al., 2008). There are three subclasses of rules based on the
following three functional forms (where X is a variable, f is some function, V is
a vector of variables that does not include X, and W is a vector of variables that

may include X) (Hucka et al., 2008):

Assignment Rules - Those rules where the left hand side is the value of the

variable set by that rule, i.e. X = {(V).
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Rate Rules - Those rules where the left hand side is the value of the rate of

change of the variable set by that rule, i.e. X = f(V).

Algebraic Rules - Those rules where the left hand side is zero, i.e. 0 = {(W)

The three classes of rules are described in detail in Sections 4.8.1 - 4.8.3. More
rigorous definitions of rules are available in the SBML specification (Hucka

et al., 2008).

4.8.1 Assignment Rules

Assignment rules are used to express equations that set the value of a variable,
and an implementation of assignment rules based on that described in the SBML
documentation is used (Hucka et al., 2008). These rules are usually used as a
means of calculation convenience, and they are used extensively in the MCM to
track the masses of “lumped species” such as amino acids (P;) or the total mass
of the cell. For example, the assignment rule for the total mass of amino acids

(Pl) iS,

P, = Val+Tyr + Gin+ Gly + Glu+ Ala + His
+ Pro+ Ser + Phe + Asn+ Thr + Cys + Leu (4.25)

+ Ile+ Asp+Trp+ Lys + Arg + Met

Some of the lumped species defined in the MCM are presented with their

general definitions in Table 4.6.
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Table 4.6: Some lumped species defined by assignment rules in the Minimal Cell
Model. Each species is actually a parameter whose value is set to the
sum of all the chemical species in that lumped species. There are other
lumped species in the model omitted here for brevity.

Lumped Species

Definition

A
Py
Py
Py
Py
PPP

cofactors

M,

TotalMass

All compounds involved in glycolysis.

All 20 amino acids.

Ribonucleotides

Deoxyribonucleotides

Cell membrane precursors

All compounds involved in the pentose phosphate
pathway

All cofactors included for cofactor metabolism
All protein species.

All RNA species.

All mRNA species.

All tRNA species.

Total cell membrane mass (protein and lipid).
Total mass of all cytoplasmic species.

Total mass of all chemical species.

4.8.2 Rate Rules

A rate rule expresses the rate of change of a particular variable, and an

implementation of rate rules based on SBML is used here (Hucka et al., 2008).

Variables that are set by rate rules may not appear in chemical reactions, and

therefore in this model no chemical species trajectories are set directly by rate
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rules. Rate rules are, therefore, used to expresses the rates of change for
particular cell parameters. The only rate rule used in the current model is

Equation 4.26.

dMethState

0 = MethRate (4.26)

MethState is a parameter that describes how methylated the chromosome is (on
a scale from 0 to 1). The MethRate in Equation 4.26 refers to the rate at which
methyl groups are transferred from S-adenosylmethionine (sam) to DNA by
the MraW enzyme, forming S-Adenosyl-L-homocysteine (sahs) as a by-product
(Equation 4.27).

MethRate = Ve, - Sahsg (4.27)

In previous models produced in the Shuler group, rate rules were also
used to track the rate at which septum was formed in the cell division
process (Domach et al., 1984; Browning and Shuler, 2001). In the current model,
septum material is an explicitly modeled chemical species, so no artificial rate
rule is necessary. Equation 4.26 gives the rate of change of the methylation state

of DNA, which affects the ability of the cell to initiate DNA replication.

4.8.3 Algebraic Rules

An algebraic rule describes a constraint on a model variable in relation to other
model variables, and an implementation of algebraic rules based on SBML is

used here (Hucka et al., 2008).
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The MCM uses a single algebraic rule (Equation 4.28) to constrain the width
of the cell (CW), as described in Section 4.19.

0=V-— (‘/cellbody + ‘/endcaps + ‘/septum) (428)

In Equation 4.28, Vicivody, Vendcaps, and Vseprum are defined by assignment rules
based on the width, length, and surface area of the cell. The variable that is

adjusted to make the geometric constraint true is the cell width, CW.

4.9 Events

Events describe instantaneous, discontinuous changes in the state of the model,
and an implementation of events based on SBML is used here (Hucka et al,,
2008). Because they cause discrete changes in the cell structure or behavior that
occur instantaneously when the cell reaches some predefined condition, events
require special mathematical treatment during a simulation. For example, the
‘initiation of DNA replication” event occurs when a threshold number of DnaA

molecules is bound to the DNA OriC.

In the MCM, an event could, for example, describe instantaneous changes
in the masses of the chemical species in the cell (i.e. at cell division). There are
a total of 36 events in the base model. The names and trigger functions for all
36 events are presented in Appendix F. Here, we present as examples a generic
event, as well as the “DNA Initiation” and “DNA Termination” events from the
MCM. The entire list of events is summarized in Table F.1. The specifics of the

DNA replication events will be discussed in Section 4.15.
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4.9.1 Generic Event Example

Imagine an event where the concentration of a metabolite (elicitor) activates
the synthesis of a species in a secondary metabolic pathway. When the

concentration of the elicitor is above a threshold, the event is triggered, i.e.

Trigger: <o > thr,

The event will occur when the concentration of the elicitor (e”c%) is greater
than the threshold, thr.. Once the trigger function’s value changes from false
to true, the event “fires”, and the cell responds by executing a number of event
assignments. In the case of the elicitor, one might expect a number of reaction

pathways to be activated or augmented. For example,

Event Assignments:
v, — 1eb

flag. — 1

where v, is some reaction rate constant that is increased to a new level by
the presence of the elicitor, and flag. represents that some other physiological

process has been activated.

4.9.2 DNA Initiation

DNA Initiation is the start of chromosome synthesis. The trigger function for

DNA Initiation is:
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Tl'iggel‘5 (DnaGboundtO—Ori Z Z.'rnltthreshald) A\ (fla'gmeth - ]—)

In short, the replication process is triggered when the mass of DnaG bound to
the origin of replication (Ort) exceeds threshold init;p esnoid- The trigger function

for DNA replication initiation is explained in more detail in Section 4.15.1.

There are 21 event assignments associated with DNA replication initiation.

Below, 11 examples are presented.

Sample DNA Initiation Event Assignments:
DnaGyoundto-ori — 0
DnaByoundto-ori — 0
HupApoundto-ori — 0

DnaG — DnaG + DnaGroundto-ori - OTiap
DnaB — DnaB + DnaGroundgio-ori - OTiap
HupA — HupA + HupApoundto-ori - OTigp
flagmetn — 0
MethState — 0
f lagrepl —1
M3iu — DNA

t DN A-init — time

After DNA replication commences, it is assumed that the proteins bound to
the Ori are rapidly forced off by the opening of the chromosome replication
fork. Thus, DnaGyoundio-ori, DnaByoundto-ori, aNd Hup Apoundio-ori are set to zero
by this event. Those proteins are each added back into the cytoplasmic pools,

and the free pools of DnaG, DnaB, and HupA are updated to reflect the change.
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Some event assignments reflect changes in the cell’s state. For example, setting
flagmen, and MethState to 0 resets the methylation state of the chromosome, and
setting flag,e, to 1 tells the model that DNA replication is now active, so that
the DNA synthesis reaction is activated. Other event assignments are updates
of bookkeeping parameters. For example, M3;,;; is recorded to monitor the
initiation mass of the cell, and ¢ py 4-init tracks the time of replication initiation.
The full list of event assignments will be available on the website described in

Appendix I

4.9.3 DNA Termination

The simple trigger function for DNA replication termination becomes true when

the replication fork reaches the terminus of replication (see Section 4.15.3).

Trigger: (ForkPosy > 1.0)

After DNA replication ends, 11 variables are updated. For example,
Cheriod tells how long the chromosome replication took. The full list of event
assignments associated with DNA Termination will be available on the website

described in Appendix I

4,10 Model Failure and Constraints

Model failure in the minimal cell corresponds to cell death, but cell death can
occur for a variety of reasons. Each reason is considered to be analogous to a

particular type of cell failure in biology.
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Constraints are a mechanism for specifying the conditions under which the
model simulation is invalid, and an implementation of constraints based on
that described in the SBML documentation is used here (Hucka et al., 2008).
In the MCM, constraints that specify that no species can have a negative mass
are introduced. There is one constraint for each chemical species. Constraints
are implemented in SloppyCell as events that cause a Mass Constraint Violation
exception to be raised in Python that lets the user know that an invalid model

condition has been encountered (Gutenkunst et al., 2007a).

For a cell to be viable it must have a stable cell division cycle. If the model
just continually grows without dividing, a parameter set has been selected for
which the model’s trajectory through state space does not intercept the cell
division event surface (i.e., the Poincaré map for the system is not approaching a
tixed point (Nikolaev et al., 2005)). This error may also lead to an OverflowError
in the Python simulation as the concentration of a particular species will

increase indefinitely if the cell never divides.

A Singularity Error occurs in the solution when there is a non-invertible
matrix encountered in the integration. This points to an inadequacy or

inconsistency in the model solution or parameter set.

A Zero Division Error occurs when the cell has need of a nutrient that is
not present. This is similar to a Constraint Violation, because no species should
be able to be consumed in the cell to the point where its concentration is zero

(although it may become infinitesimally small).
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411 Functions

Function definitions associate an identifier with a function such that the
identifier can be used to call the specified function anywhere else in the model
(Hucka et al., 2008). The only function defined in the current MCM is the
Heavy Function (HF), which is convenient for determining the gene dosage for
each gene in the model. More detail on the HF function definition is provided
in Section 4.16, and simple examples of functions are presented in the SBML

documentation (Hucka et al., 2008).

4.12 Genetic Loci, Genes, and Gene Clusters

A genetic locus is a location on the computer chromosome that may code for

protein or RNA products and may bind various species.

For a single genetic locus, the user can specify its:

e chromosomal positions (multiple copies are allowed)

binders (chemical species that bind to the locus)

DNA sequence

number of genes (for gene clusters)

source organism

functional category and subcategory

A gene is a genetic locus that codes for either a protein or RNA product.

Gene clusters are groups of genes that perform related functions and are
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adjacent to each other on the computer chromosome. For the purposes
of the model simulation gene clusters are treated as single genes. All
products from a gene cluster are assumed to be subject to the same global
regulation mechanisms. Genes within a cluster are positioned together on the
chromosome. These could be groups of operons or regulons, but practically
speaking the impact on the cell model is that the protein products of all the

genes in the cluster are treated as a single lumped species.

A computer chromosome is automatically constructed from the genes
in the MCM’s minimal gene set. There is conflicting evidence regarding
the conservation of gene order in bacteria (Mushegian and Koonin, 1996a;
Dandekar et al.,, 1998; Tamames et al., 2001; Tamames, 2001). Mushegian
and Koonin (1996a) found that gene order is not generally conserved in
distantly related bacteria. Dandekar et al. (1998) reported that genes whose
orders are conserved are more likely to have physically interacting products.
One line of research found that bacterial shape was determined by the
order of genes involved in cell division rather than by their presence or
absence (Tamames et al., 2001), and that gene order is conserved in closely
related species (Tamames, 2001). The prevailing evidence, however, has
suggested that gene order is not conserved across long evolutionary distances in
bacterial species (Mushegian and Koonin, 1996a; Tamames, 2001), and thus the
genes are ordered arbitrarily in this first release of the full MCM. It is proposed
to implement a more rigorous scheme for gene ordering in future work (Section

6.2).

For coding genes (i.e. those that code for protein or RNA products), one can

specify their:
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e mRNA and protein initial concentrations

e protein sequence (in the case where the sequence is different from what

you would predict based on the DNA sequence).

o factors influencing the mRNA and protein synthesis or degradation rates

Each gene has a variable “gene dosage” (GD) that tells how many copies of
that gene exist in the cell at a given time. Note that the gene dosage for a “gene
cluster” is multiplied by the number of genes in that cluster. This accounts for
the fact that for a cluster with n genes, the corresponding RNA transcript species

represents n transcript products.

4.12.1 Binders

Some genetic loci are capable of binding proteins or other molecules in the cell.
The extent to which a particular locus is bound can affect cell physiology. For
example, the initiation of DNA replication depends on the binding of proteins
to the origin of replication. Binding molecules could also be used to implement
transcriptional level control of gene expression, though this is not used in the
current model. The unbinding rates for binders are written as first-order rate
laws. However, because the concentration of binding molecules is quite low,
the unbinding rate is insignificant compared to the binding rate in the default

condition of the model.
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4.12.2 Gene Products

RNA products include tRNA, rRNA, and mRNA species. The synthesis

reactions for these products are described in Section 4.16.

Protein product synthesis rates are described in Section 4.17. A user can
optionally specify an alternate form for protein products when initiating a
coding gene. This is useful for cases where a protein can be converted into
another species through metabolic reactions or physiological species. For
example, proteins translocated into the membrane to act as integral membrane

transporters have a “free” form and a “membrane” form.

4.13 'Transport

Our strategy for simulating a minimal cell depends largely on importing
the building blocks of macromolecules from the external environment. The
model treats glucose, fatty acids, free nucleoside bases, all 20 amino acids,
cofactor precursors, and some inorganic ions as external species at a constant
concentration that must be transported into the cell. For each transporter a gene,
or genes, that correspond to the transporter are included. The protein products

of these genes must be incorporated into the membrane to be catalytically active.

Transport proteins are synthesized in the same manner as all other proteins
in the model. A Michaelis-Menten expression is used to describe integration
of transporters into the membrane because it is assumed to be an enzyme
catalyzed process controlled by chaperon proteins coded for by the proti.ansioc

gene cluster described in Section 4.13.1. Transporters affect transport reactions
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as multipliers to their rates. Rate equations for nutrient import and waste export
are written either as Michaelis-Menten like equations or as simple diffusion
equations. Rate constants are estimated for transport equations using the
procedure outlined in Section 4.7.3. It is of note that enzymes with multiple
substrates are constrained to have similar transport rate constants for each of

their substrates.

This model includes four types of transport: primary active transport
coupled to phosphate transfer, active transport coupled to H™ or Na*™ import
(symport), facilitated diffusion promoted by transport proteins, and passive

diffusion driven by a concentration gradient.

Active transport is the transport of species across the membrane against
a concentration gradient. Primary active transport uses chemical energy
(such as ATP) to provide energy for the movement against a concentration
gradient. To model active transport we write transport reactions that include the
simultaneous consumption of the appropriate phosphate donor. For example,
consider the stoichiometry and rate of the alanine (Ala) transport reaction

(Equations 4.29 and 4.30).

0.202-H20 + 5.7 - ATP +1- Alag, —2 > 4.8-ADP+1-Ala+ 1.1-Pi (4.29)
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(dAla) . Alaeyy ATP
dt Rala fredle (Alaeat + Kspata-Ata-eat) (ATP + Ksgpaja-arp - Vo)
(4.30)

Kig Ala-Ala

, Al
(K IR-Ala-Ala T T,

) “Tpgt - Kip-ala

Kip aj, is defined as a product of Michaelis-Menten inhibition terms

(Equation 4.31).

N

. Kig Ao
Kig aiq = - 4 4.31
(Al H KZR—Ala—z‘ + Inh@b, ( )

In Equation 4.30, (%3?), is the rate of the transport reaction for alanine

pg Ala
h'pg TBgt ’

catalyzed by the Bgt transporter, vg 4, is a transport rate constant (
Ala.,; is the external concentration of alanine (%), Ala is the cytoplasmic mass
of alanine, AT'P is the cytoplasmic mass of ATP (pg), T, is the membrane
mass of Bgt transporter protein, K'sg_ajq-aia-eot 1S @ saturation constant describing
the activating effect of external alanine on the uptake rate, (%), Ksr aiaarp
is a saturation constant describing the activating effect of cytoplasmic ATP on
the uptake rate (%), and V¢ is the cytoplasmic volume (um?®). Kig 4, is a
dimensionless inhibition term describing the competitive inhibition of alternate
substrates for the Bgt transport system and defined in Equation 4.31 (see Section
4.13.1). The inhibition constants in Equation 4.31 all have units of .*%;, and there

are N such constants.

A second type of active transport used in the MCM is symport, which is
when a substrate is transported into the cell against its concentration gradient

while another small molecule or ion is transported into the cell with its
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concentration gradient. For example, the transport of aromatic amino acids into
the cell is facilitated by AroP, an H* symporter. The stoichiometry and rate
laws for symport reactions are analogous to Equations 4.30 and 4.31. The model
does not track the cellular or extracellular concentration of H*, so the strength
of the proton motive force is not explicitly known. However, the Gil et al. (2004)
gene set includes a set of genes from ATP synthase to maintaining the proton
gradient (Gil et al., 2004). These genes are included as a gene cluster, but the cell
also boots the proton motive force by coupling proton export to lactate export

(see Section 4.13.8).

Facilitated diffusion is driven using rate laws of the form in Equation 4.30.
The only difference between this active transport rate and a facilitated diffusion
rate is that facilitated diffusion does not have the ATP dependence. The
stoichiometry for such a reaction would not include any ATP consumption
either. Currently, the only nutrient imported into the MCM via facilitated

diffusion is K.

Simple diffusion is the spontaneous transport of a species across the
membrane in the same direction as its concentration gradient. For example,
thiamine is transported into the cell via a diffusion reaction (Equations 4.32 and

4.33).

1 - thiamine,y — 1 - thiamine (4.32)

thiamine

(d(thiamme)
Ve

- ) CSA  (4.33)

) = UR-thiamine * (thzamzneezt -
Tihiamine
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where Vpihiamine 15 @ transport rate constant related to the diffusion coefficient

and the cell membrane thickness (5%), thiamine.,; is the external concentration

) thiamine
s Vo

of thiamine (5 is the cytoplasmic concentration of thiamine (-%-), and
SA is the cell surface area. As expected, the model has diffusion transport
rates that are significantly lower than the active transport rates. However, if
experimental evidence shows that the cofactor precursors which are assumed to
enter the cell through simple diffusion cannot enter quickly enough to maintain
a growing cell, it may be necessary to introduce new genes whose products can

facilitate their diffusion.

4.13.1 Transporter Function

Some protein transporters operate on multiple substrates. In these cases, there
is competition between the substrates for the enzyme. A product of multiple
Michaelis-Menten competitive inhibition terms is used to account for the effect
of multiple substrates. Each transport rate law has one inhibition term for each
alternative substrate. For example, a transporter that carries four substrates
will have three external inhibition multipliers for each of its transport rate laws.
The inhibition constant for each inhibition term is assumed to be 15x the default
external concentration for each inhibitory nutrient. It should be noted, however,
that because the external environment of the cell is constant, that any change in
inhibition term can be exactly compensated for by an adjustment in the rate
constant for the corresponding reaction. Therefore, the absolute values of the
inhibition constants used in the development of this base model are not critical

as long as they correspond to reasonably achievable nutrient concentrations.

149



In E. coli, transport proteins share the same pathway for localization as some
excreted proteins (Murphy and Beckwith, 1996). Gil et al. (2004) recommend
a set of five genes for protein translocation and secretion. These five genes
are included as a single gene cluster, proti,ansioc, Whose product catalyzes the
incorporation of transport proteins into the membrane. This cluster includes

the genes ffh, ftsY, secA, secE, and secY. The process is exhibited in Figure C.1.

4.13.2 Transport in the Minimal Gene Set

Gil et al. (2004) propose including only two transport systems in the minimal
cell. They included a phosphotransferase (PTS) system for active-transport
of carbohydrates, and a transporter for inorganic phosphate (Pi) to provide
phosphate for metabolic reactions. The implementation of the PTS system is
discussed in Section 4.13.3, and the function of the PitA transport system is
explained in Section 4.13.7. Gil et al. (2004) also propose that the products of the
hpt and upp genes catalyze a simultaneous transport and activation of external
free bases, but they do not label these genes as “transport” specific (Section
4.13.4). Similarly, they propose that the uptake and activation of fatty acids

is performed by the product of the fadD gene (Section 4.13.5).

We have elected to include 18 additional transporters in the MCM for amino
acid and ion transport (Sections 4.13.6-4.13.7). The Gil et al. (2004) gene set
proposes that lactate will be the end product of the fermentation of glucose,
but it proposes no means to remove that lactate from the cell. To prevent
excessive lactate accumulation in the cell a lactate transporter has been included

in the MCM (Section 4.13.8). In total, the MCM has 23 genes that code for
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proteins whose primary purpose is transport. Of these, 19 are new additions
compared to the Gil et al. (2004) minimal gene set. Finally, precursors of
cofactor biosynthesis are allowed to enter the cell via diffusion (Section 4.13.9)

as proposed by Gil et al. (2004).

4.13.3 Glucose Transport

The phosphotransferase (PTS) system imports and phosphorylates glucose at
the expense of phosphoenolpyruvate (PEP). The PTS transporter included is
a glucose-specific PTS system coded by ptsG, ptsH, and ptsl. Gil et al. (2004)
found that all the components of the PTS were present in all the reduced genome
bacteria they considered except for W. glossinidia. PTS plays a crucial role in
the MCM because it provides a means for the cell to obtain both energy and
carbon for metabolism. The PTS system in the MCM is feedback inhibited by

glucose-6P and activated by the presence of PEP.

4.13.4 Nucleotide Precursor Transport

To synthesize nucleotides and then later RNA and DNA, the cell needs to be able
toimport free bases. Analysis of the M. genitalium genome has not identified any
genes that code explicitly for free base transporters (Mushegian and Koonin,
1996b). Castellanos et al. (2004) chose to include a single gene product for free
base transport, but did not specify which gene coded for it in their final gene
tally. The nupG gene in E. coli is responsible for nucleoside import, but those

nucleosides must be altered to get transformed into NMPs. Gil et al. (2004)
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propose that free bases diffuse through the minimal cell’s simple membrane, but
they claim it is also possible that their transport and incorporation is coupled
to the hpt and upp reactions (Hochstadt-Ozer and Stadtman, 1971). Here it is
assumed that the free bases A, G, and U are transported into the cell in reactions

catalyzed by membrane bound Hpt and Upp.

4.13.5 Fatty Acid Transport

Fatty acid biosynthesis pathways were incomplete in most of the genomes
studied in (Gil et al., 2004). Based on the minimal gene set they proposed Gil
et al. (2004), it is assumed that the transport of fatty acids into the cell is coupled
to the action of acyl-CoA synthase (EC 6.2.1.3), which is encoded by fadD (Gil
et al., 2004; Schmelter et al., 2004).

4.13.6 Amino Acid Transport

Gil et al. (2004) proposed that amino acids diffuse into the cell through its
less highly structured cell membrane (Gil et al., 2004). A functional minimal
cell would probably need protein transporters to ensure that amino acids are
delivered at a rate capable of sustaining growth. Therefore, the Gil et al. (2004)
minimal gene set is supplemented with 14 genes related to transport of amino
acids. The amino acid transporters are summarized in Table 4.7. All amino
acid transporters used in the MCM require energy either directly from ATP or

indirectly in cotransport.
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4.13.7 Inorganic Ion Transport

Transporters for K, Mg?", Mn?*, Na", and inorganic phosphate (Pi) have
been included in the MCM. Of these ions, the Gil et al. (2004) gene set only
provides a transporter for Pi. Inorganic cations are necessary for three reasons

in prokaryotes (Silver, 1996):

1. The cells require a high intracellular osmolarity to maintain turgor

pressure.
2. Cations are reusable cofactors in some enzymes.

3. Metalloenzymes use the cations as stably-bound permanent components.

The minimal gene set proposed by Gil et al. (2004) does not include protein
transporters for any inorganic cations. Instead, they propose that a minimal cell
would obtain these ions from the environment via diffusion in a manner akin
to the “free-diffusing cell” proposed by Luisi et al. (2002). It would probably
be difficult for the cell to obtain the ions it requires from the environment
by diffusion alone. Therefore, in the MCM, one transporter for each of the
categories listed above is included, as well as an Na™:H* antiporter to export
Na* that accumulates from the import of serine and threonine. Note that the
MCM does not track the masses of individual ions. The mathematical effect
of having the proposed transporters included is to make sure that the model
accounts for the metabolic energy and precursors required in their synthesis.
An estimate of the cation uptake rate is also made for use in calculating the

energy requirements for the transport process.
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Potassium (K*) is found in the cytoplasm of all organisms at high
concentration (Silver, 1996), and this high concentration helps the cell maintain
its turgor pressure. E. coli has at least six enzyme systems related to the
uptake or export of K* (Silver, 1996). From these the Kup system has been
selected, which is a single-protein, low-affinity uptake system controlled by
chemiosmotic force (Silver, 1996). The low-affinity system was selected because
it contains only a single protein, and the idealized environment of the minimal
cell will have a sufficiently high level of K* to provide a concentration gradient

for transport.

Magnesium (Mg*") is the second most abundant intracellular cation after
potassium (Silver, 1996), but in contrast to K™ its role is primarily as a cofactor
of some enzyme catalyzed reactions. For Mg*" uptake the MgtA system of E.
coli was selected (Silver, 1996). This is an ATP binding protein and therefore an
estimate of Mg*" uptake rate is made to calculate how much ATP is required

for the transport system.

Manganese (Mn?") is an example of a metal that is stably bound to some
metalloenzymes (Silver, 1996). The energy source for the transport of (Mn*")
in E. coli is the proton motive force, and that consumption is accounted for
in the MCM’s submodel for energy metabolism. The gene that codes for this

transporter is mntH (Kehres and Maguire, 2003; Courville et al., 2004).

Sodium export ensures that sodium imported from the uptake of serine and
threonine does not accumulate to toxic levels. The MCM includes the nhaB gene

to code for an Na*:H™" antiporter.
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The cell requires a phosphate transporter to replenish the inorganic
phosphate (Pi) consumed in the synthesis of phosphorylated nucleotides and
their precursors. Gil et al. (2004) include the gene pitA in their proposed gene

set. PitA is a Pi transporter powered by the proton motive force.

K*, Mg?*, and PO, are all reported as a necessary components of growth
media for Mycoplasma mycoides Y (Miles, 1992), which supports inclusion of
their transporters in this model. Although this model is significantly more
detailed than previous versions of the MCM, it does not yet have the resolution
to monitor the concentrations of ions. Introducing ion concentration tracking
would allow a better understanding of energy metabolism processes. However,
it is still necessary to estimate the rate at which the ions are transported to

calculate their approximate impact on energy metabolism.

Mn?* and Pi import, as well as Na' export, are powered by the membrane
energization, or proton motive force, of the cell. It is assumed that each divalent
ion will required the symport of two H*, while each the monovalent sodium ion
will require one H* carried in antiport. To figure out how many protons need
to be imported for these processes, it is necessary to know approximately how

many ions are being transported.

For Mn?" and Pi import, the estimate made in the Shuler group’s E. coli
model is followed and it is assumed that all the inorganic ions account for 5%
of the cell’s mass (Domach, 1983). If the minimal cell weighs approximately 1
pg and it is assumed that the ions have equal representation, then each ion will
account for 0.01 pg. The net transport over a cell cycle is approximated with

the expression,
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where t is time, ¢; is the doubling time for the cell, v;,, is the maximum
transport rate for the ion, K., is the constant saturation term for the external
concentration of the ion, 7;,, is the mass of the transport enzyme in the cell
membrane as a function of time, and ion, is the initial mass of the ion in the cell.
The initial mass for each transport enzyme in the MCM is about 7.5 x 107* pg.
If it is assumed that the enzyme’s mass will double according to the exponential
rate law Tj - 2!, then the integration in Equation 4.34 can be performed and

estimate for the unknown rate constant v;,, can be obtained. This yields,

iong _dong - [n(2)
Ksatext : ﬁt::(fd Eon dt Ksatext . T(]

(4.35)

Vion =

Equation 4.35 provides an estimate for the ion uptake rate constant which
is then used to estimate how many H' ions need to be exported by the ATP
synthase to maintain the proton motive force. This rate constant estimate is

used for each of the ion transporters in the MCM.

For Na™ the transport burden is indirectly coupled to the amount of serine
and threonine imported into the cell. It is assumed that each molecule of
serine or threonine is symported into the cell with a single Na*. To prevent an
accumulation of Na* in the cell, it is assumed that the vast majority of sodium
must be exported. Therefore, the number of protons that must be exported to
account for sodium export is directly calculable from the rates of serine and

threonine uptake.
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While the MCM does not maintain a detailed balance of inorganic ions, these
calculations ensure that the model accounts for the physiological energy burden

of ion uptake.

4.13.8 Lactate Transport

The final reaction of glycolysis based on the minimal gene set is the pyruvate
dehydrogenase reaction, which converts pyruvate into lactate. Because all the
ATP production in the minimal cell comes from substrate level phosphorylation,
glycolysis runs at a high throughput and a large amount of lactate will be
produced. The follow-up work to Gil et al. (2004), considers lactate to be a
“sink” chemical (Gabaldén et al., 2007), but they do not specify the mechanism
by which its concentration is maintained. It is proposed here that the minimal

cell will require a mechanism for lactate efflux.

Lactate efflux from bacteria is common in fermentative bacteria, but specific
proteins involved in the process are not very well studied (Konings et al., 1995).
Research suggests that lactate can be released via symport with 1-2 H* (Konings
etal., 1994; Konings, 2002). This expulsion of H ions is in accordance with Gil’s
suggestion that the ATPase acts as a proton pump to maintain the membrane
polarization with respect to H* (see Section 4.20.4). Therefore, the lactate
permease (IctP), which has been shown to have lactate export activity in B.
subtilis (Ramos et al., 2000; Chai et al., 2009), is included. This proton symport
system translocates 1-2 H* for every molecule of lactate. Because one H is
produced per lactate during lactic acid fermentation, the proton symport must

export two HT per lactate to vield a net change in the proton motive force.
P P y g P

158



However, in an acidic environment, the lactate export will only result in one
H™ per lactate molecule being translocated into the medium. Therefore, at low
pH values lactate excretion does not generate a membrane potential (Konings
etal., 1994). The ATP synthase included in Gil et al. (2004) will run in reverse to

maintain the membrane potential.

4.13.9 Diffusive Transport

Gil et al. (2004) propose that all of the nutrients necessary for cofactor
biosynthesis diffuse into the cell. This includes thiamine, riboflavin,
nicotinamide, folic acid, and pantothenic acid. The general rate equation for
diffusion is presented in Equation 4.36, where R, is the rate of diffusion, P, is the
permeability per unit thickness of the membrane to species i, SA is the surface
area of the cell, and C,,; and C;, are the concentrations of the species outside

and inside the cell, respectively.

Ri = Pz -SA - (Cout - CZ ) (436)

4,14 Metabolic Reactions

One module is dedicated to defining the reactions of metabolism, including
glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, membrane
lipid biosynthesis, and cofactor biosynthesis. The overall metabolism of the

MCM is presented in Figure 4.2.
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Figure 4.2: Overview of metabolic processes included in the Minimal Cell
Model. Solid lines represent flow of mass within the cell. Dashed
lines represent transport processes. Boxes within the cell membrane
are subsets of metabolism described by the MCM. External nutrients
for the MCM include glucose, amino acids, inorganic ions, cofactor
precursors, fatty acid precursors, and free bases. PPP is the Pentose
Phosphate Pathway. Details of reactions in each box are displayed in
Appendix C in Figures C.2-C.8.
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4.14.1 Glycolysis

The minimal cell depends heavily on the bacterial glycolytic pathway. Through
glycolysis, the cell can synthesize ATP from substrate level phosphorylation
as well as make precursors necessary for the pentose phosphate pathway and
for lipid metabolism. All the major enzymes of glycolysis are included in this
pathway (see Figure C.2). It is of note that there is a strong feedback for glucose

uptake from one of the end-products of glycolysis, PEP.

4.14.2 Pentose Phosphate Pathway

The pentose phosphate pathway takes fructose and phosphoglyceraldehyde
from glycolysis and uses it to synthesize 5-carbon sugars which are precursors
for nucleotide biosynthesis. Gil et al. (2004) include rpe (ribulose-phosphate
3-epimerase), rpiA (Ribose 5-phosphate isomerase), and tkt (transketolase) in
their original minimal gene set (Gil et al., 2004). They suggest in an update
that glpX (sedoheptulose-1,7-bisphosphatase) is also necessary (Gabaldén et al.,
2007). All of these genes have been included in the MCM. The pathway is

depicted in Figure C.3.

4.14.3 Lipid Metabolism

The proposed minimal gene set contains seven genes dedicated to lipid
biosynthesis. This is in contrast to an earlier MCM that proposed a lipid
synthesis module with only five genes (Castellanos et al., 2007). In the

analysis of Castellanos et al. (2007), it is assumed that glycerol-3-phosphate and
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fatty acids are each transported into the cell by membrane transport proteins.
However, no genes are explicitly named to accomplish this function, accounting
for the discrepancy in gene counts (Castellanos et al., 2007). Gil et al. (2004)
explicitly includes a gene that transports fatty acids into the cell, as well as a

gene to synthesize glycerol-3-phosphate from glycolytic intermediates.

In accordance with Gil et al. (2004) it is assumed that the minimal cell has
a lipid bilayer made only of phosphatidylethanolamine (PE) with embedded
membrane proteins. They conclude that the fatty acid precursors necessary for
membrane biosynthesis can be obtained from the environment and activated in
a single step by acyl-CoA synthase (fadD). In a follow-up paper, Gabaldén et al.
(2007) imply that the specific acyl-CoA used is palmitoyl CoA (pal), and this

assumption is followed here.

Gil et al. (2004) include plsB and plsC for converting the activated fatty acids
into phosphatidate (PA), as well as cdsA to convert the PA into CDP-diglyceride.
Castellanos et al. (2007) also included these genes. The remaining genes differ
in (Castellanos et al., 2007) and (Gil et al., 2004) because the former assumed that
a minimal cell’s membrane would be composed of phosphatidylglycerol while
the later assumed it would be phosphatidylethanolamine (PE). The assumption

of Gil et al. (2004) is followed and PE is used as the membrane phospholipid.

The full lipid biosynthesis pathway is depicted in Figure C.4.
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4.14.4 Nucleotide Metabolism

The minimal cell synthesizes all ribonucleotides (and deoxyribonucleotides)
from the A, G, and U free bases, in combination with the 5-phosphoribosyl
diphosphate sugar (PRPP). Phosphate donors in the form of ATP or GTP are
required at several steps along the way. Gil et al. (2004) include 15 genes
dedicated to nucleotide biosynthesis, while earlier work from Castellanos et al.
(2007) lists only 12 genes. The discrepancy comes from what each author
chose to include under the umbrella of ‘nucleotide metabolism’. The study by
Castellanos et al. (2004), while functionally complete in terms of the reactions
necessary to synthesize specific nucleotides, neglected some aspects related to
those reactions. For example, the action of ribonucleotide reductase (nrdE and
nrdF) is coupled to the activities of thioredoxin (frxA) and thioredoxin reductase
trxB, yet trxA and trxB were not included (Castellanos et al., 2004). Furthermore,
Gil et al. (2004) included prsA for the synthesis of PRPP, whereas Castellanos
et al. (2004) left that contribution coarse-grained. The study by Gil et al. (2004)
took a holistic view of metabolism and thus the list of genes proposed by Gil
et al. (2004) has been used here. More detailed diagrams of the nucleotide

biosynthesis reactions are in Figures C.5 and C.6.

4.14.5 Cofactor Metabolism

A cofactor is a nonprotein chemical species that is required for an enzymes
activity. These molecules, such as CoA, NAD®, and FAD are essential for
a functioning cellular metabolic network, but they are often overlooked or

assumed constant in models of cellular metabolism. In designing the minimal
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gene set, Gil et al. (2004) assumed that the cell has free availability of cofactor
precursors, and that those precursors can enter the cell by simple diffusion.
This assumption is followed for the precursors of cofactor metabolism. Once
the precursor molecules are in the cytoplasm, cofactors can be synthesized
via short biosynthetic pathways that minimize the cell’s gene requirement. A

representation of the cofactor biosynthesis reactions is in Figures C.7 and C.8.

4.14.6 Energy Metabolism and Fermentation

The minimal cell obtains ATP from substrate-level phosphorylation in
glycolysis, producing lactate as the final step. In the process of producing
lactate, NADH is reoxidized to NAD™ and thus this bacteria is fermentative.
Even small traces of oxygen are toxic to many anaerobic bacteria. When these
strict anaerobes encounter oxygen, toxic products such as hydroxyl radical
(OH-) and hydrogen peroxide (H;O,) are formed. Hydrogen peroxide is
dangerous to microorganisms because it can oxidize transition metals to form
more hydroxyl radicals (White, 2000). Oxygen-tolerant microbes have the
enzyme superoxide dismutase that catalyzes the transfer of the extra electrons
from a radical oxygen to a second radical, forming hydrogen peroxide. These
microbes also have the enzyme catalase, which breaks two hydrogen peroxide
molecules into water. The proposed minimal gene set does not contain either
of these enzymes (Gil et al.,, 2004). Therefore, it is assumed that the MCM

represents a strictly anaerobic cell that exists in a benign, O,-free environment.

The cell also produces energy in the form of a proton-motive force. As it is

defined, the Gil et al. (2004) minimal gene set produces a proton-motive force by
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exporting H* at the expense of ATP using the ATP synthase running in reverse.
However, there is another possible source of proton export via the lactate
exporter included in the MCM. While the actual proton export stoichiometry
depends on the ApH, it has been estimated that this transporter exports one H*
per lactate exported (Konings et al., 1994; Konings, 2002). This is not enough to
generate a proton motive force to drive the uptake of inorganic nutrients, some
amino acids, or to drive the ATP synthase in the forward direction to produce
ATP. Thus, ATP synthase is included to maintain the protein gradient in the
MCM.

In the Energy module of the MCM, the proton export rate associated with
lactate transport is calculated. Because the cell drives a large amount glucose
through glycolysis, lactate is produced and exported in large quantities (as
may be expected with a fermentative bacteria). The protons required to drive
nutrient transport are estimated, and the balance of the proton motive force is
used to drive the ATP synthase and produce ATP. If the proton motive force is
insufficient to drive nutrient uptake, the ATP synthase in the MCM will run in

reverse and consume ATP.

4.14.7 Specific Reaction Notes

Cmk/Tmk

In the reaction scheme for the previously proposed minimal gene set shown in
Figure 2 of Gil et al. (2004), CMP is not a necessary metabolite. However, it
is produced in lipid synthesis by the PssA reaction (CTP is consumed to make

phospholipid intermediates). The previous work is at some points contradictory
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on the role that CMP will play. Gil et al. (2004) postulates that Tmk (EC 2.7.4.9)
can perform the function of Cmk (EC 2.7.4.14), and therefore the cmmk gene is not
included. However, Figure 2 of (Gil et al., 2004) does reference the Cmk protein.
Furthermore, in their follow-up work, Gabaldén et al. (2007) do include Cmk,
claiming that it was omitted from Gil et al. (2004). Gabaldén et al. (2007) goes on
to show that the NDKS5 activity of Ndk is dispensable in their reaction network.
However, this conclusion depends on the presence of a cytidylate kinase activity

such as Cmk.

It was the original intention of Gil et al. (2004) was that cmk not be included
in the minimal gene set based on the fact that several prokaryotes with reduced
genomes use a single kinase to phosphorylate all pyrimidine nucleoside
monophosphates (R. Gil, University of Valencia, personal communication,
March 22, 2010). Therefore, Cmk is not included in the MCM, and the functions

of the Cmk enzyme are fulfilled by Tmk.

CTP synthase

CTP synthase (EC:6.3.4.2) (coded by the pygG gene) is the enzyme that catalyzes
the conversion of UTP to CTP with the addition of an amino group. The amino
donor can be either -NHj or glutamine (KEGG reactions R00571 and R00573,
respectively). Because the MCM explicitly encodes glutamine but not -NHj, we

opt to use the later reaction.
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4.14.8 Reaction Reversibility

Some enzyme catalyzed reactions are thermodynamically reversible. There are
two ways for us to treat reaction reversibility in this modeling framework.
Some weakly reversible reactions can be approximated using inhibition terms.
The effective rate decrease caused by an inhibition term at high product
concentration will mimic the effect of a reverse reaction. The second way is to
explicitly introduce a reverse reaction that has the opposite stoichiometry and
a manually determined rate. The rate constant calculation procedure described
in Section will set reverse reaction rates to zero unless they are explicitly given
a lower bound (see Section 4.7.3). Therefore, all the rate constants for reverse

reactions are manually curated in this system.

In the model presented here, it is assumed that most metabolic reactions
are irreversible. It is of note that imposing the condition of reversibility on the
reactions in the MCM has not been necessary to make the model simulation
work. In nature, a large motivation for reversing reactions is to obtain building
blocks for metabolic pathways when certain precursors are not available. A
minimal cell, however, will have all of its nutrients supplied in its optimally
supportive culture environment. Therefore, the need for having reversible
enzymatic reactions is greatly reduced. Reversing a reaction could even be
deadly for a minimal cell because the product of that reaction may not be
produced by other reactions. However, in some cases it may be possible to
further reduce the size of the minimal gene set by allowing reactions to be
reversible, and this is suggested as a route for further study (Gabaldén et al.,

2007).
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4.15 DNA Replication

A computer chromosome is automatically constructed from the 241 genes in the
MCM'’s minimal gene set. Because evidence has suggested that gene order is
not conserved across distantly related bacterial species, the genes in this model
are ordered arbitrarily (Mushegian and Koonin, 1996a; Tamames, 2001). It is
proposed to implement a more rigorous scheme for gene ordering in future
work (Section 6.2). The initiation (Section 4.15.1) and termination (Section
4.15.3) of DNA replication are now discussed, as well as the DNA synthesis
reaction in the MCM (Section 4.15.2).

4.15.1 Initiation of DNA Replication

We have previously proposed a model for DNA replication in E. coli that relies
on the titration of ATP-activated DnaA protein molecules binding to the origin
of replication (Atlas et al., 2008). The specific mechanism of initiation, however,
varies amongst bacterial species (Konieczny, 2003; Kogoma, 1997), and there are
multiple options open to a minimal cell (Gil et al., 2004). DnaA, the proposed
initiation protein used in the model of E. colj, is absent in the proposed minimal
genome, and the authors suggest that DNA replication can take place without
an initiation protein under some conditions (Gil et al., 2004). One condition that

may lead to this phenomenon may be the possession of a small genome.

Gil et al. (2004) propose that the recruitment and loading of a helicase at the
DNA origin of replication requires a histone-like protein (HupA) to destabilize
the nearby DNA duplex. Once the duplex is destabilized, the helicase DnaB
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is able to attract the primase DnaG to the replication fork. After a threshold
level of primase is present at the fork, DNA replication initiates, HupA, DnaB,
and DnaG are released, and the replisome takes over the synthesis of the DNA
molecule. The proposed gene set also includes a DNA gyrase to assist in
unwinding over wound regions of DNA during replication. To simulate the
effect of HupA, DnaB, and DnaG proteins sequentially binding the OriC until
they reach a threshold value, events (see Section 4.9) that monitor when the
protein increases above or decreases below its threshold value are introduced.
The sequence of events being modeled is depicted in Figure 4.3. The threshold
value for activation by HupA is set to 30 molecules, which is based on similar
values used for a model of initiation by DnaA protein in the E. coli model (Atlas
et al., 2008). Specific data were not available for the number of molecules of
DnaB or DnaG that are necessary to initiate chromosome synthesis, so it is
assumed that one helicase (DnaB) is necessary at each replication fork (for a
total of two per initiation), and that four DNA primases (DnaG) are necessary
to allow the polymerase to commence DNA strand synthesis. It is assumed
that these molecules are prevented from binding to the Ori after initiation

commences because the chromosome is unwound.

To model binding reaction rates for small numbers of molecules usually
requires a stochastic approach. For the 30 molecules of DnaA in previous
studies it was found that a deterministic approach was adequate (Browning
et al, 2004), so that approach is used here for HupA. For DnaB and
DnaG, there is probably error inherent in modeling the binding of so few
molecules deterministically, but it is assumed that the binding of HupA is the
rate-controlling step in the process, and therefore the DnaB and DnaG binding

reactions” primary purposes are to capture the necessity of these products for
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cell division. The binding reactions are modeled using simple mass-action

kinetics.

In E. coli DNA must be methylated for initiation to occur. It has been
proposed that methylation functions to prevent the cell from reinitiating
DNA synthesis before the previous round has progressed sufficiently. The
semi-methylated DNA is recruited to the cell-membrane, which prevents
subsequent initiations. This effect was captured in our previous model (Atlas
et al, 2008). Gil et al. (2004) do not include a DNA methylase in the
DNA replication section of their gene set, but they do include a “poorly
characterized” methyltransferase, mraWW. We assume here that mraW codes
for a DNA methyltransferase that remethylates DNA after a round of DNA

replication completes.

The assumptions used for replication initiation are sufficient to control
DNA replication in the MCM. Previously, a much more complex model of the
control of DNA replication initiation in E. coli using the DnaA protein was
published (Browning et al., 2004; Atlas et al., 2008). The model presented here
has similar constraints, but is simpler. The more sophisticated mechanism in
E. coli and other bacteria may exist because they have to respond to a more
complex environment. To the extent justified by experimental or theoretical
evidence, it would be possible to include the more complex model of DNA
replication initiation presented in Atlas et al. (2008). The framework presented

here would allow the adoption of a more complex model in future work.

Note that the model for DNA replication initiation used in the MCM does
not attempt to simulate the physical structure of the genome, but the actual

physical structure may be important (Echtenkamp et al., 2009). The initiation
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Figure 4.3: Mechanism for DNA replication initiation in the Minimal Cell
Model. HupA is a histone-like protein, SSAB is Single-Stranded
Binding Protein, DnaB is a helicase, and DnaG is a primase. In
the proposed model, HupA destabilizes the DNA duplex near Ori,
which allows the DnaB helicase and the DnaG primase into the
replication fork. When DNA replication initiates, the proteins are
released.
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model is summarized in Figure 4.3.

The Gil et al. (2004) gene set does not include proteins for compaction
or stabilization of the DNA structure, and it is assumed that these will be
dispensable for bacteria with minimized genomes. This may be a weak
assumption, but incorporating these genes would not alter the function of the
mathematical model presented here as no description of the physical structure

of the chromosome has been included.

4.15.2 DNA Synthesis

DNA synthesis is a coarse-grained reaction that consumes dNTPs in the relative
proportions at which they are present in the chromosome. The reaction is
catalyzed by the lumped “Replisome” protein, which contains protein products
coded for by the dnaE, dnaN, dnaQ), dnaX, holA, holB, gyrA, gyrB, lig,
and ssb genes. As the chromosome replicates, the relative distance along the
chromosome (i.e. Fork Position) is calculated by comparing the amount of DNA

synthesized to the mass of a single chromosome.

The mass of the chromosome is calculated from the sequences of all the genes
in the minimal genome. In the current model the mass of the chromosome is

Mcpr ~ 3.77 x 107* pg. The fork position is, therefore, calculated as,

M.
Fork Position = > -1 (4.37)

CHR * NMUMchrome

where M5 is the mass of DNA in the cell, and num,ome 1S the number of

complete chromosomes. For these simulations, nunics,om. is either one or two,
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but it would be possible to allow multiple rounds of DNA replication initiation
as in previous models developed for E. coli (Domach et al., 1984; Browning et al.,

2004; Atlas et al., 2008).

4.15.3 Termination of DNA Replication

It is assumed that DNA replication terminates automatically when the
replication fork reaches the DNA terminus, which consists of multiple copies of
the TerA sequence from E. coli (Hill, 1992). After termination, the FtsZ protein
is recruited to the midcell region to commence septum formation and division
processes (Section 4.19.2). This process is perhaps the least mechanistic of these

events and deserves attention in subsequent models.

4.16 Transcription

Individual genes are transcribed from the genome constantly throughout the
cell cycle. Each RNA-coding locus on the chromosome has an RNA synthesis

rate of the form in Equation 4.38.

dRN A, GD;  (dM,
v . 438
( dt )S URNA D e (dt )S (4.38)
dM.
( d;) = fiaras - P2ming - Ms - RN Ay (4.39)
S

In Equation 4.38 v 4, is a synthesis rate specific to RNA; that is biologically
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g RNAi) GDZ'

p
related to a promoter strength ("2°5-%), 75~

is the fraction of total gene dosage
represented by gene i, and (%2) ¢ is the overall RNA synthesis rate for the
cell (Equation 4.39). The gene dosage term appears for all mRNA synthesis
equations by default, but if it is not required it can be optionally removed

(i.e. when a gene’s transcription is not regulated this way). In Equation 4.39,

pg Mo

tares is the overall RNA synthesis rate constant (h,pg oo FNA
po

1), P2ming, is a
dimensionless saturation term for the scarcest ribonucleotide precursor, Mj is
the mass of DNA (pg), and RN A, is the lumped mass of enzymes involved in
RNA synthesis (pg).

Note that due to the promoter strength constant in Equation 4.38, the sum

dM>

of all RNA synthesis rates will not sum to (%7

)~ Equation 4.39 is therefore
supposed to represent a base capacity for RNA synthesis, the apportionment of

which is determined for each RNA species by Equation 4.38.

Gene dosage for each gene is monitored automatically as a function of the
replication fork position on the chromosome. If there is a single, non-replicating
chromosome, in the cell, then the dosage for each gene is equal to its copy
number. Once DNA replication begins, the gene dosage for each gene becomes

a calculable function of fork position (fork position is defined in Equation 4.37).

There are two ways to calculate gene dosage. It can be updated via
events each time the replication fork passes through a coding locus. For
many genes, this tends to be a slow method because many events will fire as
soon as the chromosome begins replicating. Alternatively, gene dosage can be
calculated using a smooth function that approximates a step function. We use

an exponential of the form shown in Equation 4.40.
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1
(]_ + e—200-(FP—gp))

HF(FP,gp) = (4.40)

where the heavy-step function (HF) is approximated as a function of the fork

position (FP) and the position of a particular gene (gp).

It is important to verify that the synthesis rate of RNA and the approximate
number of RNA polymerase molecules per model cell fall within reasonable
ranges for natural bacteria. The combined molecular mass of the rpoA, rpoB,
and rpoC gene products (and therefore of the RNA polymerase core enzyme)
is 6.5 x 1077 pg. These genes are included within a gene cluster, and it is
estimated that the resulting RNA polymerase proteins account for about 50%
of the protein products of this gene cluster, which corresponds to an average
of about 5 x 1072 pg of RNA polymerase per minimal cell, or approximately
6,550 molecules of RNA polymerase per cell, which falls in the range for E.
coli (Bremer, 1996).

The transcription rate per molecule of RNA polymerase for stable RNA
in E. coli is 85 2 (Bremer, 1996), and the rate for mRNA in E. coli has been
reported as 28-89 2. If all the RNA polymerase molecules in the cell were active
simultaneously, they could synthesize 0.3-1.1 &8 RNA, which is sufficiently
above the 0.27 '8 RNA produced at the model cell’s default conditions. Given
the level of RNA polymerase in the MCM and the availability of precursors, the

capacity of the cell to generate this level of RNA is sufficient.

It is assumed that RNA degradation is proportional to the mass of each RNA
species in the cell. The rate constant for degradation can be set to a lower bound.

Otherwise, it will be set to zero by the rate constant calculation procedure
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because the procedure tries to minimize the sum of all reaction rate constants.
Real cells require RNA degradation so they can reuse nutrients over the course
of the cell cycle as different gene functions become necessary. For a minimal
cell cultured under constant benign environment, the need for RNA turnover is
far less compelling than for a cell that has a plethora of genes to choose from.
Therefore, the MCM has relatively low degradation rate constants. Finally, it
is assumed that “stable” RNA species such as ribosomal RNA (rRNA) have no

degradation reactions.

4,17 Translation

Translation is governed by the following steps:

1. Production and maturation of rRNA species.

2. Production of ribosomal protein species.

3. Ribosome synthesis from ribosomal protein and rRNA species.
4. Production of 20 tRNA species.

5. Binding of the 20 amino acids to their corresponding tRNAs.

6. Protein synthesis with a stoichiometry based on the DNA /RNA sequence.

The overall process is depicted in Figure 4.4 and described in Sections 4.17.1

-4.174.
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Figure 4.4: Protein synthesis scheme for the Minimal Cell Model. Solid arrows
represent mass flow, while dashed arrows represent connections to
other metabolic pathways or transport processes. Labels in italic are
enzymes. Amino acids are imported into the cell through one of
eight amino acid transport systems (see Table 4.7). The amino acids
are combined with the appropriate tRNAs to form aa-tRNA species
which proceed to ribosomes for protein synthesis. Note that tRNAs
are recycled, and that some portion of protein synthesis (called RibO
here) goes toward synthesizing ribosomal proteins.
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4.17.1 Ribosome Synthesis

Prokaryotic ribosomes have a 50S (large) subunit and a 30S (small) subunit.
Prokaryotes generally contain three rRNA molecules which are incorporated
into ribosomes. The 50S subunit contains 23S and 5S rRNAs, while the 30S
subunit contains a 165 rRNA. A wide range of prokaryotes have similar rRNA
nucleotide compositions (Pace, 1973). In M. genitalium the 23S, 16S, and 5S
rRNAs are coded for by the rrlA, rrsA, and r7fA genes, and their sequences are
used in the model. It is of note that even though rRNAs are definitely required
for cell growth, they are not included in the Gil et al. (2004) gene set because

that list only includes protein-coding genes.

The rRNA species in this model are implemented under a single gene
cluster that produces a species called rtigna, or “immature” rRNA. As in the
previously published E. coli model (Domach and Shuler, 1984), the rRNA
must mature before it is incorporated into ribosomes. The ribosome synthesis
reaction combines mature rRNA with ribosomal proteins in the appropriate

stoichiometry to form ribosomes.

4.17.2 Transfer RNA

Cells can have up to 61 unique codons in their genome. Each codon may pair
with a different tRNA molecule, but many cells have fewer than 61 tRNAs.
The Gil et al. (2004) minimal gene set does not include tRNA genes, however,
tRINA is clearly a required part of protein synthesis and thus must be included
in a minimal cell. It has been proposed that a minimal cell could survive

with 21 tRNA species (one for each amino acid, and one for a start codon) if
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the degeneracy were removed from the genomic code. In other words, if all
degenerate codon expressions were collapsed to single codons, then the cell

would only need 21 tRNAs.

On the other hand, the degeneracy of codon usage protects the cell in terms
of robustness to DNA replication errors. If the codon usage were limited to
21, then the cell would be more prone to replication errors, and DNA repair

mechanisms would become much more important.

For simplicity, we include 20 tRNA species in the MCM and assume that
each species includes within it the tRNAs for all its corresponding codons. The
model could be refined later to include more tRNA species. tRNAs combine
with their corresponding amino acids through reactions to form amino acid -
tRNA species. These reactions are catalyzed by the enzymes in the gene cluster
mat,ry 4, which includes the mnmA, mnmE, mnmG, rnpA, pth, and iscS genes as

proposed by (Gil et al., 2004).

4.17.3 Protein Synthesis

A translation model based on that used in the E. coli model is implemented
in the MCM (Domach et al., 1984). Each protein’s synthesis is of the form in

Equation 4.41.

T s =k;- C, - fracy - Ribp - AT Pyay - M 1Dmin-sat - Monr -Transgp (4.41)

In Equation 4.41, Mj; is the mass of protein i (pg), k; is the rate

constant for the synthesis of protein : (pé’gjaff];h), C, is the rate of protein
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elongation (wﬁm‘:id) (Domach et al., 1984), frac,: is the fraction of actively
translating ribosomes, Rib; is the number of ribosomes in the cell, AT P, is
a dimensionless ATP-dependent saturation term, M 1p,, sq: i @ dimensionless
saturation term based on the currently limiting amino-acyl tRNA, mRNA; is
the mass of the mRNA for protein i (pg), M2, is the total mass of mRNA in
the cell (pg), and Transp is a lumped species representing the mass of all the
non-ribosomal proteins involved in protein synthesis (pg). Note that the value
of the mass of the limiting amino-acyl tRNA species, M1p is defined Demand
object (Section 4.18).

The stoichiometry of each protein synthesis reaction is determined by the
DNA /protein sequence coded in the computer chromosome. The species
consumed as reactants are actually the amino acid - tRNA species described
in Section 4.17.2. In this manner, tRNAs are regenerated and reused as protein

synthesis continues.

Methionine Aminopeptidase

The synthesis of proteins in all cells begins with methionine. During translation,
the amino-terminal methionine of many proteins is cleaved by methionine
aminopeptidase. For the majority of proteins in prokaryotes, the proteins that
will have their methionine removed can be predicted by the amino acid in the
second position in the sequence. The consensus is that if the penultimate amino
acid is alanine, cysteine, glycine, proline, serine, threonine, or valine, then the
leading methionine is likely to be cleaved (Sherman et al., 1985; Frottin et al.,

2006).
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The proposed minimal gene set does include a methionine aminopeptidase
coded by the map gene (Gil et al., 2004). The activity of this gene has been
included in the MCM by automatically adjusting the stoichiometry of protein
synthesis for protein sequences that meet the criteria for cleavage. However,
it should be noted that the MCM does not contain a detailed mechanism
for protein synthesis. Thus, while the metabolic burden of synthesizing
the Map protein is calculated, the concentration of the Map enzyme is not

mathematically linked to protein synthesis.

4.17.4 Protein Degradation

Protein degradation is assumed to be proportional to the mass of protein in the
cell. The rate constant for each protein’s degradation rate was set to a lower
bound of 0.025 A~! in Domach. Because the protein degradation rate law is
second order in the mass of protein and the mass of the protein degradation
enzymes, we must choose a much higher rate constant with different units for

any appreciable degradation to occur.

pg A degr
pg A present - pg Degnip - h

As a starting point, 1 x 10? ( ) is selected as a lower

bound for the protein degradation rate constants, where A is the protein being

degraded, and Degy, is the set of enzymes responsible for enzyme degradation.

418 Demands

Physiological processes such as DNA replication, transcription, and translation,

consume many different reactants to create long biological polymers (i.e., DNA,
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RNA, and protein, respectively). While it is possible to model a dependence
on multiple substrates using a combination of Michaelis-Menten like saturation
terms, the combination of many such terms leads to unreliable models because
even if all the reactants are present in excess in the cytoplasm, the combination
of many fractional terms can lead to greatly decreased reaction rates. For
example, there are twenty reactants in the pseudo reaction that produces a
particular protein product. Even at high concentrations, the cumulative effect
of 20 saturation terms in a rate law could greatly decrease the calculated rate if

they were all included.

Instead of including saturation terms for all reactants involved in these
reactions, it is hypothesized that at any given time, a single reactant will have
the highest “demand” in a reaction. We propose that synthesis of biological
polymers only depends on single reactants in a Michaelis-Menten fashion.
For example, translation will only depend on a single, limiting amino acid.
During growth and development, particular amino acids will be more or less
in demand and that single, limiting amino acid may not always be the same
chemical species. To address that phenomenon, a ‘Demand’ class for was
created the MCM. Each Demand object creates the parameters, equations, and
events necessary to track the limiting reagent for a particular reaction. To create
a Demand, one must specify the species that can act as limiting reagents for a

reaction, as well as their saturation constant for that particular reaction.

The mass of each species is used to determine which chemical is in demand
(i.e., the species with the lowest mass has the highest demand). This could
later be updated to use the number of moles or molar concentration, but such

an update is left as future work. The potential for demands to impact the
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Figure 4.5: Chemical species demands over the course of the cell cycle. During
the course of the cell cycle, changes in gene dosage can cause
changing requirements for nucleotides. In this illustration, the
demand is initially for ATP, and then switches to GTP.
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cell behavior are illustrated in Figure 4.5, which shows an example of how
the “in demand” species for a reaction could change over the cell cycle, and
how that change affects the model equations. Note that at the beginning of
the simulation, one (and only one) of the demand species in a Demand object
must be limiting (i.e., the species associated with a particular Demand cannot
all initially be equal). If they are, the system will not be able to select an initially

limiting reagent.

The purpose of tracking this demand during the simulation is to calculate
which reactant is limiting the reaction most severely at a given time. A high
demand corresponds to a low concentration of a species, and a low demand
corresponds to a high concentration. When the demand for species A surpasses
the demand for species B, the reaction in question will automatically start using

the mass of the more-limiting species in the calculation of the reaction rate.

4.19 Geometry

The shape of the model cell is determined automatically from the volume of
its compartments (Sections 4.4.1,4.4.2). It is assumed that the cell shape is
spherical (Figure 4.6). The two parameters describing the shape of the cell
are the length of the cylindrical cell body (C'L) and the width of the cell body
(CW). For a spherical cell CL is always zero. The length of a dividing cell’s
dividing region (the septum) is referred to as SL. When termination of DNA
replication completes and the cell division process starts, the enzyme FtsZ
recruits membrane material to the septum. This results in a ‘figure-eight” shaped

cell where the connecting region gets thinner and thinner until the cell divides,
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as in Figure 4.6(B). The current release of the MCM assumes a spherical shape

by default.

4.19.1 Cell Volume

Given this shape, we can write the expressions for the surface area of the cell,

(SA), in a cylindrical or spherical cell (Equations 4.42 and 4.43, respectively).

SA=raCW?+7CW - CL (4.42)

SA=nCW? (4.43)

These expressions are true only before division has started (i.e. when no septum
has formed). However, the surface area of the cell is also calculable from the

mass of the cell membrane (Equation 4.44).

SA = fg- M, (4.44)

where fg = 1.2 x 102“]3—“;2 is the conversion factor for mass to surface area for the
cell membrane based on E. coli (Domach and Shuler, 1984) and M, is the mass

of the cell membrane (pg).

The mass of the cell membrane is used to calculate the SA so that Equation
4.42 can be rearranged to obtain an expression for the cell length in rod-shaped

bacteria.
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_ SA—aCW?

L
¢ TCW

(4.45)

Equation 4.45 is still in terms of the cell width. To obtain cell width, we write an

expression for the total volume of the cell depicted in Figure 4.7.

2
V= %CW3 + 2

CL (4.46)

Substituting the expression for C'L in Equation 4.45 into Equation 4.46 yields:

Vv 6CW + 7 1

2 o 2
cw .(SA WCW) (4.47)

TCW
Equation 4.47 is an expression for the cell volume solely in terms of CW. We
can solve for the width of the cell setting the expressions for volume in 4.3 and
4.47 to be equal. This modeling structure is an algebraic rule. The derivation
for a spherical cell simpler because the cell does not have a body length (i.e.,

CL = 0), and Equation 4.46 reduces to Equation 4.48.

V=_—CW? (4.48)

4.19.2 Cell Division

The Gil et al. (2004) minimal gene set includes a single gene devoted to cell
division, ftsZ. FtsZ is thought to be a major component of cytoskeletal structure,

as well as a GTP binding protein and GTPase (Bramhill, 1997). The cell
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Figure 4.6: The spherical Minimal Cell Model. CW - Cell Width. The two
labeled compartments, cytoplasm (V) and cell membrane (Vay),
together comprise the volume of the whole cell, V. (a) The cell
before septum formation begins. (b) The cell after septum formation
as started. When the septum is complete (i.e. SL = 9%), division
occurs.
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Figure 4.7: The cylindrical Minimal Cell Model. CW - Cell Width, CL -
Cell Length. The two labeled compartments, cytoplasm and cell
membrane, together comprise the volume of the whole cell, V.
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has between 5,000 and 20,000 FtsZ molecules (Bramhill, 1997). After DNA
replication is complete, FtsZ forms a ring at the midcell division site. FtsZ can
operate in the absence of a cell wall (Bramhill, 1997), which again makes it a
good candidate for an MCM. ftsZ is conserved over a wide range of species, and
is the only fts gene present in Mycoplasma, although the Gil et al. (2004) minimal
gene set also includes ftsY. Thus FtsZ is included in the MCM as the chief
promoter of cell division. Some chaperonins are also implicated in division,
but it is assumed here that the rate of division is controlled solely by the FtsZ

protein.

Once DNA replication has completed (termination), the FtsZ protein in
the cell is recruited in to the septal ring to catalyze the transfer of membrane
material to the midcell region (Lutkenhaus and Addinall, 1997; Bramhill, 1997).
After division, the FtsZ is released from the midcell (which has become the cell
end cap) and reserved for subsequent divisions. Cell division occurs when the
growing septum reaches the size of the diameter of the cell. In other words,
after DNA termination, the septum is continually synthesized until it crosses
the entire cell, effectively resulting in two physically separate daughter cells. An
improved MCM could include mechanisms for positioning FtsZ and initiating

cell division.

4.20 Minimal Gene Set
The MCM implements a whole-cell dynamic model of a single cell that contains

the minimal gene set described by authors Gil et al. (2004). The authors break

their minimal gene set into five major categories:
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1. Information Storage and Processing

2. Protein Processing, Folding, and Secretion
3. Cellular Processes

4. Energetic and Intermediate Metabolism

5. Poorly Characterized

The differences between the Gil et al. (2004) gene set and what is included
in this base MCM are reconciled in Sections 4.20.1 - 4.20.5. In particular, the
minimal gene set proposed by Gil et al. (2004) only considers protein-coding
genes (it does not include tRNA or rRNA species). Furthermore, the authors
assumed that the cell could import amino acids and inorganic ions (e.g.,
K* and Mg*") from the environment through diffusion, but it is likely that
transporters will be required. Finally, the authors suggest that the cell will
synthesize ATP exclusively through substrate-level phosphorylation via lactate
fermentation, but they provide no mechanism for synthesized lactate to exit the
cell. Therefore, three rRNA genes, 20 genes tRNA genes, 14 genes coding for
amino acid transport systems, four genes for transport of inorganic ions, and
one gene corresponding to a lactate transporter has been added to the MCM.
This yields a total of 241 genes (Appendix B). Figure 4.2 shows an overview of
the metabolic features of the MCM, and each metabolic module is detailed in
Appendix C. Table 4.8 shows a summary of how many genes fall into particular
functional categories in the MCM. A full listing of the genes in the MCM is

presented in Table B.3.
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Table 4.8: Summary of genes used in the Minimal Cell Model, listed by category.

Category No. Genes
Basic DNA replication machinery 14
Basic transcription machinery 8
Biosynthesis of Cofactors 12
Biosynthesis of nucleotides 15
Cell division 1
DNA repair, restriction, and modification 3
Glycolysis 10
Lipid metabolism 7
Pentose phosphate pathway 4
Protein folding 5
Protein post-translational modification 3
Protein translocation and secretion 5
Protein turnover 3
Proton motive force generation 9
Ribosomal RNA (rRNA) 3
Transfer RNA (tRNA) 20
Translation factors 12
Translation: amino-acyl-tRNA synthesis 21
Translation: ribosomal proteins 50
Translation: ribosome function, maturation, and modification 7
Translation: tRNA maturation and modification 6
Transport 23
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4.20.1 Information Storage and Processing

DNA Metabolism

The DNA replication and repair systems are less complex in Mycoplasma species
than in bacteria with larger genomes (Labarere, 1992), and it is expected that a
minimal bacterium would have a simple DNA replication system. Gil et al.
(2004) state that the four basic steps of DNA replication are: (i) Recognition
of the origin of replication by protein components, (ii) Recruitment of initiator
proteins to the origin to promote initiation of replication, (iii) DNA synthesis
along two forks on the circular chromosome, and (iv) Replication termination

and the separation of the daughter chromosomes.

The mechanism for DNA replication initiation varies widely in different
bacteria. The MCM combines concepts proposed by Gil (Gil et al., 2004) and
those used in a DNA replication model simulated in previous research on E.
coli (Browning et al., 2004; Atlas et al., 2008). The mechanism used in the MCM

is discussed in Sections 4.15.1 - 4.15.3.

Gil et al. (2004) include 13 genes in the minimal gene set for the purpose of
DNA replication. Of those, three (dnaB, dnaG, and hupA) are modeled explicitly
as initiators of DNA replication, while the remaining 10 are included in the

replisome gene cluster.

Gil et al. (2004) include three genes in the minimal gene set for the purpose
of DNA repair, restriction, and modification. It is debatable whether a minimal
cell would require these functions. Because the MCM exists in a totally benign

environment the extent of DNA damage would be minimized. However,
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because DNA polymerase is error-prone, some DNA damage may occur even
in a benign environment. Therefore, the three genes suggested in Gil et al.
(2004) (nth, polA, ung) have been included. However, because the MCM does
not include a mechanism for DNA damage, the protein products of these genes
have no mathematical impact on the cell behavior. Currently, their only impact
is via the energy burden the cell experiences in their synthesis. It is possible
that this model might serve as the basis for a cell model where DNA damage
is relevant and should be dealt with. In that case, the three genes included for

DNA repair would have a mathematical function.

RNA Metabolism

Gil et al. (2004) list eight genes as being necessary for the basic transcription
machinery. Of these, seven are included in an RNA polymerase gene cluster.
The remaining gene, nusA is used in transcription/translation coupling, and is

therefore included in the gene cluster for translation factors.

The MCM takes 19 of the 21 proposed amino-acyl-tRNA synthesis genes
and includes them explicitly. The remaining two, pheS and pheT, are the o and
3 subunits of a single amino-acyl-tRNA synthetase, so they are included as a

single gene cluster.

The six genes Gil et al. (2004) list for tRNA maturation and modification are

included in the MCM as a single gene cluster.

There are 50 ribosomal proteins included in the Gil et al. (2004) gene set.
All 50 of these are included in a single gene cluster called 7ibO, the largest gene

cluster by far. In absence of a detailed mechanistic model for ribosome assembly
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and function, these genes must remain in a single cluster with a single product

corresponding to ribosomal protein.

The seven genes listed for ribosome function and maturation are included
as a single gene cluster called 7ibM. The product of this gene cluster catalyzes

the rRNA maturation and ribosome synthesis reactions in the MCM.

All 12 genes listed as translation factors in the Gil et al. (2004) gene set are,
along with nusA included as a single “translation factor” gene cluster called

transg.

There are two genes that participate in RNA degradation in the Gil et al.

(2004) gene set, pnp and rnc. They are included as a single gene cluster called

degrna-

4.20.2 Protein Processing, Folding, and Secretion

The minimal gene set proposed by Gil et al. (2004) includes two genes related
to post-translational modification. One of these, pepA, was omitted from the
MCM gene set because it is unclear how its product, aminopeptidase A/I,
would be used in the minimal cell. Gil et al. (2004) included pepA because it
was present in all of the genomes they considered. However, it is nonessential
in both E. coli and B. subtilis (Gil et al., 2004). The other gene dedicated to
post-translational modification in the proposed minimal gene set is map, which
codes for methionine aminopeptidase (Gil et al., 2004). The map activity has

been included as described in Section 4.17.3.

Five genes for protein folding, dnaJ, dnaK, groEL, groES, and grpE are
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included in the Gil et al. (2004) gene set. Because protein folding is required
in all cells, we have included these genes in the MCM as a single gene cluster.
However, the MCM does not contain a protein folding submodel, so the

products of the protein folding gene cluster do not impact the model simulation.

Finally, the three “protein turnover” genes proposed by the Gil et al. (2004)
gene set, gcp, hflnB, and Ion are included as a single gene cluster that catalyzes

protein degradation.

4.20.3 Cellular Processes

Cell Division

Gil et al. (2004) propose that the only gene necessary for cell division in their
minimal cell is ftsZ, and this gene is explicitly included in the MCM. At the
time of DNA replication termination, FtsZ catalyzes the transfer of membrane

material to the midcell region, promoting cell division.

Transport

Gil et al. (2004) include four genes related to transport of nutrients into the cell.
pitA, an inorganic phosphate transporter, is included explicitly in the MCM. The
three genes coding for the phosphotransferase system (PTS), ptsG, ptsH, and pts]

are included as a single gene cluster.
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4.20.4 Energetic and Intermediate Metabolism

Metabolic processes straightforward to represent in the coarse-grained
modeling framework, as these reactions are the main basis for the previous cell

models (Domach et al., 1984).

All 10 genes listed by Gil et al. (2004) for glycolysis are included explicitly in
the MCM.

The nine genes included as part of the ATP synthase machinery are included
as a single gene cluster in the MCM. It is presumed that the ATP synthase runs
in reverse to extrude protons and maintain the proton gradient. This is common
behavior amongst lactic acid bacteria (Hutkins, 1993). However, if enough H*
is exported by the lactate efflux at the end of the fermentation, it is possible that

the ATP Synthase will run in the forward direction and generate ATP.

The four genes included for the pentose phosphate pathway are included
explicitly in the MCM (Gil et al., 2004; Gabaldén et al., 2007).

The minimal gene set contains genes for synthesizing ATP through substrate
level phosphorylation only. Specifically, the cell does not have an electron
transport chain. It does contain the F1 ATPase in the cell membrane, but Gil et al.

(2004) propose that this will run in reverse to help maintain a proton gradient.

The Gil et al. (2004) gene set does not explicitly address the issue of cellular
use of NAD™" vs. NADP* in terms of reducing power. A review of the reactions
catalyzed by the minimal proteome reveals that in principle NAD" coupled
with NADH should be sufficient. The single exception is that TrxB (thioredoxin

reductase) does prefer NADP™, but there is some evidence that a similar enzyme
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could function with NAD* (Reynolds2002), so we follow the assumption of
Gil et al. (2004) and Gabaldon et al. (2007) and use NAD'/NADH for redox
reactions. It is important to know whether the cell is capable of balancing
redox species use. The metabolic rates in the MCM are able to balance NAD+
and NADH so that there is sufficient reducing power generated without an

imbalance.

Of the seven genes listed for lipid metabolism, four (cdsA, gpsA, psd, and
pssA) are included explicitly as single genes. The remaining three (plsB, plsC,
and fadD) are included as a single gene cluster involved in lipid biosynthesis.
plsB and plsC have been proposed as the basis for lipid membrane synthesis in

semisynthetic minimal cells (Kuruma et al., 2009).

All 15 genes listed for nucleotide biosynthesis by Gil et al. (2004) are included
explicitly as single genes in the MCM. The 12 genes list in Gil et al. (2004) for

cofactor biosynthesis are also included in the MCM.

4.20.5 Additional Genes

The Gil et al. (2004) gene set proposes only four genes related to transport of
nutrients into the cell, proposing that the cell should be able to obtain what it
needs from the environment by diffusion (Gil et al., 2004). This may suffice
for some nutrients, but it is likely that protein transporters will be necessary
for many other nutrients. Therefore, the gene set proposed by Gil et al. (2004)
is supplemented with an additional 19 genes dedicated to the transport of
chemicals such as amino acids. The MCM has a total of 23 genes related to

transport, which are listed in Table B.3.
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The Gil et al. (2004) gene set neglects to mention coding regions for tRNA
or rRNA species because they are not protein-coding genes. These genes,
however, are clearly essential parts of the minimal genome for a modern
chemoheterotrophic bacterium. The computer chromosome was supplemented
with coding regions corresponding to 20 tRNA species. In cases where there are
multiple tRNA alleles corresponding to a single amino acid, it is assumed that
the tRNA region is actually a gene cluster coding for all of those alleles. The

genome was also supplemented with genes for three rRNA species.

Large amounts of lactate are generated by the model because while the Gil
et al. (2004) gene set includes lactate dehydrogenase, which consumes pyruvate
and NADH, there is no reaction in the model that consumes lactate. We propose

the addition of the IctP gene for export of lactate to the external environment.

4.20.6 Other Departures from the Proposed Minimal Gene Set

There are other genes that, while necessary for a minimal cell, have no
mathematical model available for their interaction with the whole-cell. In these
cases, we have elected to include the genes to ensure that we’re accounting for
their metabolic burden on the cell, but their genes and gene-products still have
no connection to the rest of the cell. The mathematical model could be adjusted
to show their function in future work. These genes include those whose gene
products degrade macromolecules (degy; and degrya), act solely on ions in
the cell (kup, mgtA, mntH, nhaB, pitA, pmf, and ppa), or catalyze processes
for which the MCM lacks any mechanistic details (dna,ep, protsqq, map). The

implications of these exceptions are discussed in Section 5.5.

198



The proposed minimal gene set includes the pepA aminopeptidase.
However, there is no clear function for this gene in the minimal cell, so we
choose not to include it. Eight “poorly” characterized genes are included in
the gene set proposed by Gil et al. (2004) (see Table B.2). Most of these have
no known function, but were included because they were present in all of the
genomes considered in the study. Of these eight, only mraW is included in
the MCM. MraW is a methyltransferase which is assumed to be necessary for
DNA methylation and chromosome replication. However, the rest have no clear

function for a minimal cell, and are therefore not included in the MCM.

The full list of genes from the gene set proposed by Gil et al. (2004) which
have been excluded in the MCM is presented in Table B.2.

4.20.7 Analysis of the Minimal Gene Set

The minimal gene set proposed by Gil et al. (2004) has been analyzed in
subsequent work by Gabaldén et al. (2007). To perform a structural analysis,
Gabaldon et al. (2007) eliminated many of the 206 protein-coding genes from
the minimal gene set proposed by Gil et al. (2004). Specifically, they removed
polymerization reactions and any reactions involving macromolecules.
Furthermore, they only considered reactions represented in the pathway maps
of the KEGG database, which eliminates many reactions involving cofactors.
They also only considered reactants and products what have at least one carbon
atom in common on each side of the reaction. A metabolic reaction network was
thus constructed by comparing the gene functions from Gil et al. (2004) to the

new reaction database created in Gabaldén et al. (2007).
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The connection degree distribution, clustering coefficient, average path
length, and network diameter, were measured for the metabolic reaction
network (Gabaldoén et al., 2007). It was found that the average path length and
network diameter tended to decrease with the size of the network (n) rather
than with the size of the genome. An average path length and network diameter
of 5.34 and 18, respectively, were reported for the minimal gene set (Gabaldén
et al.,, 2007) when they considered a network with 165 nodes by applying the
eliminations discussed above. Gabaldén et al. (2007) also found that a random
network had a much smaller clustering coefficient than the natural or minimal
gene sets (C' = 0.031 for the minimal gene set compared to C, = 0.00977
for a random network of the same size). However, the ratio C'/C, increases
linearly with the number of nodes in a network, so smaller networks (including
the minimal gene set) have less clustering. Most importantly, the results from
Gabaldon et al. (2007) show that the minimal gene set and its corresponding
reaction network behave as one would expect for a natural genome of the same

size.

Gabaldon et al. (2007) also considered a reduced theoretical reaction network
containing only 39 genes with 50 enzymatic steps for stoichiometric analysis.
Their stoichiometric analysis did not include cofactor metabolism because, they
argued, coenzymes play a catalytic function and do not affect the stoichiometric
analysis. The reduced theoretical reaction network also assumes lactate to be a

“sink” chemical whose concentration is essentially buffered.

Using the reduced theoretical reaction network, they investigated the
robustness of the minimal gene set. They found that most mutations had a

limited effect on the topology of the network, but that the removal of a few key
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Table 4.9: Characteristics of the Minimal Cell Model genome.

Characteristic MCM Value Lit. Value Reference
Genome size (kbp) 233 580 Value from M. genitalium (Fraser
et al., 1995)
GC Content (%) 40 27.73 Median value for
mollicutes (Sirand-Pugnet et al.,
2007)
Gene density (%) 100 81-92 Various Mycoplasma

species (Sirand-Pugnet et al., 2007)
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enzymes had much more drastic effects. At the same time, the network was
sensitive to sustained random attacks. This analysis, however, does not imply
that the minimal gene set could be further reduced because maintaining the
topology of a network is different than maintaining its viability (Gabaldén et al.,

2007).

The minimal gene set used in the MCM is a modified and supplemented
version of that presented by Gil et al. (2004). This genome’s characteristics
can be compared to those of some naturally occurring small-genome bacteria
as in Table 4.9. The mollicutes, a category of bacteria that tend to have
small size and small genome, do not have a common general organization to
their genomes (Sirand-Pugnet et al., 2007), but some of their features could be
used as organizational baselines for the MCM. For example, some mollicutes
display bias in the GC skew near the chromosomal replication origin and DNA
replication initiation loci. Table 4.9 lists a gene density of 100% for the MCM.
This is because the MCM has no non-coding regions of DNA. If one or more
non-coding regions are deemed necessary to bacterial survival, they can be

added to the MCM as genetic loci.

The genes in the minimal bacterial gene set are not in all bacterial species,
and even when they are the sequence for the gene is not always known.
The genomic sequences for the proposed gene set were almost exclusively
downloaded from the KEGG website (http://www.genome. jp/kegg/). For
each gene in the minimal gene set, we searched the KEGG database gene bank

for the following list of organisms, in order:

1. (Mycoplasma genitalium) - mge

2. (Escherichia colu) - eco
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3. (Bacillus subtilis) - bsu
4. (Wigglesworthia brevipalpis) - wbr
5. (Buchnera aphidicola) - bap, bab, buc
6. (Blochmannia floridanus) - bfl
7. (Synechococcus elongatus) - syc
8. (Mycoplasma gallisepticum ) - mga
9. (Cytophaga hutchinsonii) - chu
10. (Bacillus pumilus) - bpu

11. (Rhodobacter sphaeroides) - rsp

Table B.1 shows how many gene sequences were used from each organism.

4.21 Model Implementation and Availability

Prior work on the MCM was implemented in C++ only; this made it difficult to
share the model code with other investigators. The updated model is available
in the Systems Biology Markup Language (SBML) (Hucka et al., 2003). This
representation is advantageous because anyone using SBML compatible tools
should be able to access the model. The SBML version of the model contains

408 species, 570 reactions, and 36 events.
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4.21.1 Simulation

The MCM is a differential algebraic equation system (DAE) with discontinuities
due to discrete physiological events (e.g., cell division). The full set of
equations and parameters in Systems Biology Markup Language format as
well as instructions for download and simulation are available online at http:
//minimalcell.bme.cornell.edu. The DAE is integrated numerically
using SloppyCell, a Python software package for simulation and analysis of
biomolecular networks (Gutenkunst et al., 2007a). SloppyCell has been applied
to several biological systems of interest (Waterfall et al., 2006; Gutenkunst et al.,
2007b,c). Significant updates have been made to SloppyCell as part of the
current research to adapt it to simulating a model of this size and complexity.
Specifically, an integrator that can treat systems with algebraic constraints
was added to the program, and support was added for several previously

unsupported features of the SBML specification.

SloppyCell automatically compiles the structures listed in Table 4.1 and
creates a Reaction Network object which can be integrated to obtain time course
data for any variable in the model. All model simulation results presented
in this dissertation are generated by integrating the model from an initial
condition until a stable cell-division limit cycle is reached. It is common to study
how bacterial behavior changes at different steady-state growth rates, which is
controlled by varying the external nutrient concentration. While we have done
preliminary exploration of response to reduced glucose levels, only growth at

saturating levels of glucose is necessary for a minimal cell.
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4.21.2 Testing Framework

A model must meet certain requirements to be considered a valid model
of a minimal organism. Several of these requirements are testable
computationally. Using the Python Unittest framework (http://docs.
python.org/library/unittest.html), a set of automated tests was
implemented to verify that new versions of the model met all minimal cell
requirements. Most importantly, we aimed to automatically verify that every

version of the minimal cell model meets the following requirements:

1. Genetic Minimality - No gene should be included that the cell can live
without. Every gene in a minimal cell is essential, by definition. Therefore,
any gene that is removed should result in model failure. A series of tests
were implemented that sequentially remove each gene in the model, and
verified that the loss caused model failure. Exceptions to this criterion are

discussed in Section 5.5.

2. Resource Minimality - No resource should be included that the cell can
live without. While the minimal cell does live in an optimally supportive
culture environment, it should not have nutrients in the medium that it
can do without. These tests remove each nutrient in turn from the medium

to ensure that its loss causes model failure.

3. Structure Tests - Another set of tests checks to make sure that rules, events,
and other model structures are working as expected in the MCM. For
example, for all time in the cell, the sum of all protein masses should equal
the total mass of protein in the cell (M;). Similarly, the total mass of the cell
should equal the mass of the membrane plus the mass of the cytoplasm.

Tests to verify the correct functioning of new model structures are also
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implemented. For example, there is a test to ensure that a Demand object
(Section 4.18) results in exactly one limiting reagent being assigned to each

reaction at a given time.

The full suite of tests for the MCM will be described in detail at the

supplemental website described in Appendix I.

4,22 Conclusions

We have shown for the first time that it is possible to test the hypotheses
behind a minimal gene set using a chemically detailed, dynamic, whole-cell
modeling approach. An MCM with 241 product-coding genes (those which
produce protein or stable RNA products) is presented. This gene set expands
on the minimal gene set proposed by Gil et al. (2004). We assert that
this set is genomically complete and codes for all the functions that a
minimal chemoheterotrophic bacterium would require for sustained growth

and division.

The modeling structures used for designing the MCM have been presented.
These compartments, chemical species, parameters, reactions, rules, events,
constraints, functions, and genes are all, in part, based on similar structures
present in SBML. Designing structures based on SBML allows us to easily export
the model to an SBML file, making it portable to other researchers who may be

interested in making use of the model.

Development of the MCM required implementing techniques for estimating

initial conditions and reaction parameters. An estimation technique for
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determining initial concentrations for all chemical species in the cell was
developed. This required making significant assumptions about the starting
concentrations of proteins and metabolites in the cell. To further refine the
MCW, it would be useful to have more precise initial conditions, particularly
for precursor metabolites, proteins, and mRNA species. Because the model has
many hundreds of rate and saturation parameters, a procedure to determine all
unspecified parameters has been developed. This method takes advantage of
the fact that over the course of a steady-state cell-cycle, every chemical species

in a cell must double its mass.

This is the first hybrid bacterial cell model that includes reactions that
have many activating substrates (e.g., protein synthesis depends on the
concentrations of up to 20 amino-acyl-tRNA species). To effectively treat the
reaction rates for reactions with many substrates, we introduced the concept
of “demand” objects, which automatically create model equations necessary to

track the concentration of the most “in demand” substrate.

The Shuler group has expertise in bacterial cell models that include
the effects of discrete physiological events. These events depend on the
chemical and genomic detail presented by the model, resulting in a clear
connection between genomic sequence and physiological processes including

DNA replication, transcription, translation, and cell division.

The metabolic and transport reactions included in the MCM are introduced
in Section 4.14. Detailed illustrations of these metabolic pathways are included
in Appendix C. These reactions are all balanced with respect to total mass. At
least to a reasonable approximation the MCM'’s metabolism is in balance with

respect to redox potential and carbon flow.
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The minimal gene set proposed by Gil et al. (2004) was described, and
the modifications to create the biologically complete minimal gene set used
in the MCM were also introduced. In particular, we describe the inclusion
of 19 extra genes dedicated to transport of nutrients and waste, as well as 20
tRNA genes and three rRNA genes. We included all genes from the Gil et al.
(2004) minimal gene set except six with poorly characterized function (mes],
ybeY, ycfF, yoaE, yqgF, and yral), and one whose purpose we determined to be
unnecessary in a minimal cell (pepA). The concept of a gene cluster, or a set of
genes whose products perform a closely related function, was introduced as a
way to coarse-grain the treatment of gene products whose functions could not
be distinguished at the resolution of the current model. This MCM is not unique
in the sense that other minimal gene sets or parameter sets could be used for the

simulation and still produce a viable cell.

The MCM functions indefinitely in a benign, steady-state environment. A
cell faced with any challenge, such as nutrient depletion or the start-up of a
cell culture from an inoculum, may require additional genes to achieve robust
cell-division. The major significance of this work is that it shows, for the first
time, that it is possible to build a chemically and genomically detailed model
of a minimal bacterium using the principles of coarse-grained bacterial cell

modeling and reasonable assumptions about the cell and its environment.
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CHAPTER 5
MINIMAL CELL MODEL APPLICATIONS

5.1 Introduction

This dissertation considers construction of a Minimal Cell Model (MCM) based
on the gene set proposed by Gil et al. (2004). The MCM simulates a hypothetical
bacterial cell with the minimum number of genes necessary to grow and divide
in an optimal environment (Browning and Shuler, 2001). There are several
applications of an MCM. One application is that it can act as a “learning model”
used to test our understanding of biochemistry and microbiology; our ability to
construct a chemically and genomically detailed model of a chemoheterotrophic
bacterium tells us that our understanding of metabolism is not lacking anything
essential. Additionally and practically, it can serve as a platform to test the
effects of biochemical and genetic interventions on cell behavior. Furthermore, it
has been proposed than an MCM is an important step toward the development

of a synthetic platform cell for biotechnology (Foley and Shuler, 2010).

An MCM serves as a framework to test hypotheses about minimal bacterial
cells as well as microbiology in general. The major contribution of the MCM
presented in Chapter 4 is that it tests the plausibility of the proposed minimal
gene set used to create it. It is shown for the first time that it is possible to
create a genomically and chemically detailed model of a minimal cell that is
capable of simulating sustained replication in an optimally supportive culture

environment.

This chapter explores specific applications of the base model to probe its
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general behavior and predictive capabilities. Section 5.2 demonstrates use of
the MCM to calculate important bacterial growth parameters. The application
of phase plane analysis to two pairs of model variables is shown in Section 5.3,
and, in a related analysis, the movement of the position of a gene around the
computer chromosome is considered in Section 5.4. In Section 5.5 we explore
how manipulating the activity of a gene product or expression of a gene can
affect the model cell’s survival. Section 5.6 shows how an MCM could be used
to aid development of nutrient media for small-genome synthetic cells, with a
focus on the effects of competitive inhibition on transport systems with multiple
substrates. Finally, in Section 5.7, the MCM'’s response to removing a particular
activity of the Ndk protein is compared to previous results for a structural

analysis of the minimal gene set proposed by Gil et al. (2004).

5.2 Calculation of Growth Parameters

Part of the utility of a chemically detailed cell model is that an engineer
can design experiments that probe its behavior in response to various
environmental and genetic manipulations. The MCM can also serve as a
platform to evaluate and test the plausibility of candidate minimal gene sets, as
it does in the work presented here. One way to perform such a test is to compare
the model predictions to those for general chemoheterotrophic bacteria. While
there is not an experimental lab-bench analog of the MCM, it is comparable
to a generalized chemoheterotrophic bacterial cell (Browning and Shuler, 2001;

Castellanos et al., 2004).

Table 5.1 shows calculated growth and molecular composition parameters
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obtained using the MCM. These values are compared to values for Escherichia

coli from Bremer (1996). In Table 5.1, genetic sequence measurements are based

on values from Mycoplasma and other organisms listed in the KEGG database

(Kanehisa and Goto, 2000). For a summary of organisms used as the basis of the

MCM'’s gene set and the full list of genes, see Tables B.1 and B.3. Parameters in

class I are inputs to the model (e.g., the number of deoxyribonucleotide residues

per genome is fixed by the sequences of the genes in the minimal gene set).

Parameters in classes II-V are outputs from the model simulation, except for C,,

which is an input constant based on a previous model of E. coli (Domach et al.,

1984). The five classes in Table 5.1 are defined as:

L

II.

III.

IV.

Structural parameters that do not vary with growth rate. These parameters

are calculated from the genome/proteome sequence of the minimal cell.

Partition factors which are essentially invariant. The values presented are
typical values for the model and are close to those for E. coli presented by

Bremer (1996).

Other partition parameters expected to vary with the growth rate. The
values presented here are for a minimal cell with growth rate equal to 0.86
ht.

Kinetic parameters describing functional activities. The peptide chain
elongation rate, C, is a constant parameter of the model, which we chose to
match the value used by Domach et al. (1984). The DNA chain elongation
rate, Cy, is calculated by dividing the chromosome length by the length
of time it takes to replicate the chromosome during the simulation (the C

period).
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V. Chromosome replication and cell division parameters calculated by the

simulation.

There are many areas of agreement between the E. coli data and the MCM
(e.g., fraction of active ribosomes, or DNA chain elongation rate). However,
some calculations from the MCM do not match the data from E. coli due to
the nature of a minimal cell. In class I, for example, the deoxyribonucleotide
residues per genome will be lower in the MCM because it is a model of a
cell defined by its low number of genes. Slight differences in the sequence
lengths for ribosomes, tRNAs, and RNA polymerase occur due to sequence
differences between E. coli and the source organisms used for the MCM. The
partition factors (classes II and III) show strong agreement between E. coli and
the MCM, and one would expect these features to hold constant amongst many
bacterial species. The peptide chain elongation rate, C,, is in agreement with
the high-end of the values for E. coli, but this quantity is actually an input to the
model based on data for E. coli (Domach, 1983), so it is unsurprising that they
concur. The DNA chain elongation rate, which is calculated from the model
simulation by dividing the chromosome length by the C-period length, falls
significantly below that of E. coli. Mycoplasma species tend to have slow DNA
replication rates, e.g. 100 bp/s in M. capricolum (Seto and Miyata, 1998), so it is
not unexpected that a minimal cell would also have slower DNA replication
rates. However, because of its minimized chromosome, the MCM actually
exhibits a shorter C-period (24-25 minutes) than E. coli. Finally, the D-periods
for the MCM and E. coli are similar (20.2 min for E. coli vs. 19.6 min for the

MCM).
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5.3 Phase Plane Analysis

A simulation of the MCM will produce time series mass data for every chemical
species defined in the cell. This data can be plotted as time series trajectories
that show the cell’s approach to steady-state for each chemical species. One can
also plot the concentrations of two different variables in the cell against each
other. This technique is called ‘phase plane” analysis. A well-studied example
of phase plane analysis is the application to predator-prey systems (May, 1972).
Considering dynamical systems two variables at a time is useful to visualize
their behavior. In N-dimensional systems (N > 2), the technique projects the
N-dimensional space onto a 2D-plane. Variables in the MCM can also be studied
in the phase plane by allowing the system to approach a steady-state and then
plotting two variables in the phase plane. Because the system is attracted to a

closed trajectory, the curve on the phase plane is called a ‘limit-cycle’.

Figure 5.1 shows phase plane plots for two pairs of mRNA species.
The transcripts shown correspond to the genes rpe (ribulose-phosphate
3-epimerase), rpiA (ribose 5-phosphate isomerase), adk (adenylate kinase),
and glpX (sedoheptulose-1,7-bisphosphatase). Genes that are not part of
gene clusters were selected to limit the study to transcripts corresponding to
individual genes. Recall that in the MCM chromosomal position is measured
from 0.0 to 1.0, and that the chromosome position for each gene is arbitrary
(but constant). One pair with adjacent chromosomal positions (0.531 and 0.535)
and one pair with widely separated chromosomal positions (0.001 and 0.876)
were selected. Figure 5.1(A) shows that for the pair with adjacent chromosomal
positions (rpe and rpiA), the concentrations of each mRNA track with each

other irregardless of cell cycle position. In contrast, the separated pair of genes
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Figure 5.1: Phase plane analysis of mRNA species in the MCM. The
compositions corresponding to DNA replication initiation, DNA
replication termination, and cell division are shown on the plot. (A)
shows a phase plane plot for mRNA products coded for by genes
that have adjacent chromosomal positions (rpe and rpiA, located
at 0.531 and 0.535, respectively). (B) shows a phase plane plot
for mRNA products coded for by genes with widely separated
chromosomal positions (adk and glpX, located at 0.001 and 0.876,
respectively).

225



(adk and glpX) have transcript levels whose relative values change over the
course of the cell cycle, as in Figure 5.1(B). The adk gene is located close to
the origin of replication, and is copied soon after replication initiates. The
plot shows a corresponding increase in adk,,gna relative to glpX,rna. This
continues until the glpX gene is copied, causing a change in the glpX gene
dosage and eventually and increase in the glpX,,rna concentration. This implies
that in the absence of other types of regulation, the chromosome position has a
significant influence on transcript production, a result that is explored further
in Section 5.4. This observation may be particularly relevant if the ratio of one
gene product to another is physiologically important. It is possible to generate

limit-cycle plots for any two variables in the MCM.

5.4 Gene Position Affects Protein Production

Another genetic manipulation addressed by the MCM is the effect of
gene position on protein production. The MCM'’s computer chromosome
is automatically constructed from the genes in its minimal gene set.
There is conflicting evidence regarding the conservation of gene order in
bacteria (Mushegian and Koonin, 1996; Dandekar et al., 1998, Tamames
et al.,, 2001; Tamames, 2001). Because the prevailing evidence suggests that
gene order is not conserved across long evolutionary distances in bacterial
species (Mushegian and Koonin, 1996; Tamames, 2001), the genes are ordered

arbitrarily in this first release of the full MCM.

Even though gene order is generally not conserved in bacteria, there is

evidence in E. coli that transcript levels for a significant fraction of genes are
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Figure 5.2: Effect of gene chromosomal position on protein product production
for a hypothetical gene and its protein. Fork position represents the
gene’s position on a scale from 0.0 (the Ori) to 1.0 (the terminus of
replication).

affected by cell cycle progression (Echtenkamp et al., 2009). To measure the
impact of DNA replication progression in the MCM, a hypothetical gene ins (for
insert) that codes for a hypothetical protein Ins was introduced to the computer
cell. On successive simulations, the gene’s fork position was varied from 0.0
to 1.0 (the cell’s computer chromosome is normalized so that chromosome
positions fall in this range). Figure 5.2 shows that the production of protein
Ins dramatically decreases as the coding gene moves along the chromosome.
This is the effect of gene dosage or gene copy number. As a gene is moved
closer to the origin of replication, its average copy number over the course

of the cell cycle is increased because it is replicated sooner. Those genes that
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are farther along the chromosome are replicated later, and therefore have lower
average copy numbers. The production of a particular protein is related to its
corresponding mRNA levels, and the mRNA production depends on the gene
dosage. In the absence of other types of regulation, proteins at the beginning
of the chromosome have a higher production rate in the MCM. This result
also has implications for synthetic cell design. If the position of a gene on
the chromosome can affect its expression levels significantly, then chromosome
design, including a rational choice of the relative positions of coding sequences,

will have to be tightly coupled to cell design.

5.5 Knockout Experiments and Gene Essentiality

The MCM can be used to probe the effects of genetic or other manipulations
on the cell’s survival. The essentiality of each gene in the gene set was tested
using knockout experiments. All gene and gene cluster knockouts in the model,
except for 12, cause simulated cell death. Those that do not cause cell death

correspond to genes whose products:

e degrade macromolecules (degy;; and deggrna). A cell that is totally
unchallenged may not actually require degradative pathways for
macromolecules. One of the primary reasons for degradation is to recycle
resources in a changing environment. The MCM is in an idealized
constant environment, and does not depend on degradation for recycle of
important precursors. That said, it is likely that in a real, even near-ideal

situation, these enzymes would be necessary.

e act solely on ions in the cell (kup, mgtA, mntH, nhaB, pitA, pmf, and
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ppa). These code for inorganic ion transporters, with the exception of
ppa, which is an inorganic pyrophosphatase. The MCM does not track the
concentrations of ions in the cell and assumes they are always available at
sufficient concentration to satisfy cellular needs. These genes are included
because (1) they are generally accepted as being necessary for cell survival,
(2) it is important to track the energy and precursors consumed in the
synthesis of their mRNA and protein products, and (3) the rates that their
protein products operate at is calculated to provide an estimate of energy
consumption related to transport processes. That said, removing these
products does not result in cell death in MCM simulations because the ion

concentrations that they affect are assumed to be buffered.

e catalyze processes for which the MCM lacks any mechanistic details.
(dnayep, prot soa, map). dna,., and prot j,q are gene clusters that correspond
to DNA repair, protein folding, respectively. The MCM does not contain
a model for DNA damage, therefore it does not suffer from lack of a
system for repairing damaged DNA. If a model for DNA damage were
introduced, these gene products could be explicitly linked to the cell’s
survival. Protein folding is also a process that has no mechanistic detail
in the MCM, but because protein folding is a feature of all cellular life,
these genes were included to account for the metabolic burden of their
expression. map corresponds to methionine aminopeptidase. This gene
is included in the sense that methionine is cleaved from proteins when
necessary, but the presence of the enzyme Map is not mathematically

linked to the current MCM.

Any cell constructed on the lab bench would likely require all of the genes

listed above because the assumption of a constant, benign environment can only
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be approximated at best. In the context of the assumptions made here for a

mathematical model these 12 genes are not essential.

It is possible that initial conditions could be an important factor in
successfully synthesizing a minimal bacterial cell in the lab. We present here
an example of how the initial conditions of the model can affect the output
and robustness of the computer cell. First, the effect of enzyme mass on cell
survivability is considered. Then, we consider how knockout interventions can

change dynamics in the cell to the point where it dies.

Figure 5.3 considers the effects on ATP mass of reducing the activity of the
phosphoglucose isomerase reaction (Equation 5.1), which is catalyzed by the

Pgi enzyme according to the rate law in Equation 5.2.

glucose-6P — fructose-6P (5.1)

dP g6 P
—_— = v i .
dt s " g6P + Ksyep - Vo

Pg (5.2)

In Egn. 5.2, P is the mass of fructose-6P, g6 P is the mass of glucose-6P, vp,; is

mass P
time-mass E

the reaction rate constant ( ), Ks46p is a saturation constant describing
the activating effect of glucose-6P on the reaction (-5%**-), 1 is the volume of
the cytoplasm, and Pgi is the mass of enzyme Pgi. This reaction is the first step

of glycolysis in the MCM, and is a bottleneck for energy metabolism and for

producing the precursors of anabolic metabolism.

Figure 5.3-A shows the default trajectory for the mass (in pg) of ATP over

time. The steep drop in ATP mass every ~0.8 h corresponds to the moment
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Figure 5.3: Effect of Pgi manipulations on adenosine triphosphate (ATP) mass
and cell viability. Blue trajectories are the unaltered ATP mass
over time, while the green trajectories represent the ATP mass after
changes A-D. Red dots represent the time and state of cell death. A -
Default trajectory. B - 25% reduction in Pgi mass, instantaneous. C -
60% reduction in Pgi mass, instantaneous. D - Total knockout of pgi
gene, permanent.
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of cell division, when the mass of every chemical species in the model is
instantaneously halved. After cell division occurs, the mass gradually increases
until the initiation of chromosome replication, when the synthesis of DNA and
increased demand for RNA precursors causes a rapid consumption of ATP.
Finally, when chromosome replication terminates, the ATP consumption rate
decreases and we again observe a net increase in ATP mass until the cell division

event occurs and it is once again halved.

Figures 5.3-B, C, and D demonstrate the effects of interventions related to
the Pgi reaction. The cell can recover from certain reductions in this enzyme’s
activity (e.g. a temporary, step-change reduction in Pgi levels by 25%, Figure
5.3-B), while more drastic reductions (a 60% reduction in Pgi mass, or knocking
out the pgi gene completely, Figure 5.3-C,D) result in cell death. Notably,
the ATP level drops more rapidly in Figure 5.3-C than in Figure 5.3-D. This
is because the intervention acts immediately on the protein Pgi, while the
knockout mutation in 5.3-D acts upstream on the expression of pgi. Although
the knockout ultimately has the same effect, its influence is slightly delayed so

that another cell division is allowed to be completed before the cell fails.

5.6 Competitive Inhibition of Nutrient Uptake

The MCM connects the physiology of the minimal cell directly to its
environment. The MCM could be used to guide development of appropriate
nutrient media for synthetic cells. Except for inorganic ions, which are not
tracked in the MCM, removing any of the external nutrients listed in Tables

D.1 and D.2 causes the cell to fail. To further study the effect of environmental
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nutrient modifications, model cells growing at steady-state were exposed to
step-changes in the external concentrations of arginine, a competitive inhibitor
of transport for other amino acids. Transport systems with multiple substrates
are subject to competitive inhibition (Cheng and Prusoff, 1973). To reduce the
total number of genes as much as possible, several transporters with broad
specificity were included in the MCM. For example, the Bgt transport system,
and ATP-Binding-Cassette (ABC) dimer found in Synechocystis sp., is known
to transport alanine, glutamine, glycine, leucine, proline, and serine (Quintero
et al, 2001). The MCM accounts for multiple substrate inhibition using
Michaelis-Menten competitive inhibition terms. Each transport rate law has
one inhibition term for each alternative substrate, as described in Section 4.13.1.
For example, a transporter that carries four substrates will have three external
inhibition multipliers for each of its transport rate laws. This means that the
concentrations of some substances cannot be arbitrarily increased because at
some level they inhibit growth by causing the cell to be starved of another

nutrient.

To exemplify the effect of competitive substrate inhibition on the viability of
the MCM, the external concentration of arginine was increased 2x, 5x, and 10x
(Figure 5.4). Arginine is transported into the cell by the Nat transport system
of Synechocystis sp., which also transports histidine and lysine (Quintero et al.,

2001). The rate of lysine uptake is described in Equations 5.3 and 5.4.

RLys = UR-Lys * Ksat-Lys-ext : Ksat-ATP : K'-Lys : Ki-R-Lys : TNat (53)

Ki-R-Lys-Arg-ea:t Ki-R-Lys-His-ext (5 4)

Ki R-Lys —
-R-Lys -
Ki—R—Lys—Arg—ezt + Argeazt Ki—R—Lys—His—e:ct + HZSe:ct
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Figure 5.4: Effect of amino acid inhibition on lysine (Lys) mass and cell
viability in response to increases in extracellular arginine (Arg). Blue
trajectories are the unaltered lysine mass over time, while the green
trajectories represent the lysine mass after changes A-D. Red dots
represent the time and state of cell death. A - Default trajectory. B - 5x
increase in the external concentration of arginine. C - 10x increase in
the external concentration of arginine. D - 15x increase in the external
concentration of arginine.
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In Equation 5.3, R;,s describes the rate of lysine uptake (%), Ug.Lys 1S the rate

constant for lysine uptake (h‘i gg LTYNS“ ), Ksat-Lys-ext and Ko arp are dimensionless
Michaelis-Menten saturation terms for external lysine and cellular ATD,
respectively, K, r,s is a dimensionless Michaelis-Menten product inhibition
term cellular lysine, K, r1,s is a dimensionless competitive inhibition term
defined in Equation 5.4, and Ty, is the mass of transporter Ty, (pg). In
Equation 5.4, K p-rys-Arg-ext and K;_g_1ys-mis-ext are inhibition constants (%) that

describe transport inhibition by arginine and histidine, respectively on the

lysine transport reaction.

Based on these equations, it is expected that the transport rate for lysine
will drop as either arginine or histidine is increased in the medium. Figure 5.4
demonstrates such an effect, with lysine values becoming inhibitory somewhere
between the 10x and 15x increase of the default concentration (Figure 5.4-C,D).
This shows that there is an intermediate transition nutrient concentration where

the cell transitions between life and death.

5.7 Comparison to Previous Work

There has been limited mathematical analysis of the minimal gene set proposed
by Gil et al. (Gil et al., 2004; Gabaldén et al.,, 2007). A structural analysis
revealed that a particular activity of nucleoside diphosphate kinase (Ndk) is not
necessary for cells to achieve a steady-state (Gabaldén et al., 2007). Specifically,
it was found that when the CTP + ADP <> CDP + ATP activity (the NDK5
activity) was removed from the reaction network, the cell model could still find

a steady-state.
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Figure 5.5: Effect of removing a particular activity of Ndk on cytidine
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unaltered ATP mass over time, while the green trajectories represent
the ATP mass after changes A-D. Red dots represent the time and
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of ndk gene.
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To compare the MCM to those results, we performed interventions related
to NDKS5 activity (Figure 5.5). Figure 5.5-A shows the steady-state behavior of
CDP mass (pg) with no intervention. In contrast to the result of Gabaldén et al.
(2007), the current analysis shows that the NDKS5 activity is necessary for cell
survival. Specifically it is found that removing the NDKS5 activity (Figure 5.5-B),
a 25% reduction in the rate constant for the NDKS5 reaction (Figure 5.5-C), and a
total knockout of the ndk gene resulted in cell death. The discrepancy highlights
the difference between a structural (stoichiometric) analysis of a metabolic
network and a dynamic, whole-cell model. The approach used by Gabaldén
et al. (2007) is limited to a subset of the minimal gene set in which cofactor
metabolism was not considered. It is probable that the essentiality of the NDK5
activity is only revealed when the full network (i.e.,, a whole-cell model) is
considered. Alternatively, the difference could be due to the differences in
the interpretation of which reactions are reversible in the minimal cell. The
MCM treats most reactions as irreversible or only weakly reversible, whereas
the stoichiometric analysis by Gabaldén et al. (2007) considers many reactions
to be fully reversible. Allowing more reversible reactions may provide the cell
access to steady-states that are not possible in the MCM, and it may prove
necessary for models of bacteria living in more complicated environments or

with more diverse metabolism.

5.8 Conclusions

The ultimate goal of computational systems biology is to be able to ask a
computer simulation any question that can be asked of in vivo models. The

key to realizing that goal is the addition of mechanistic, chemical, and genomic
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detail to models of whole-cells that are actively growing and dividing. In this
chapter, a variety of computational experiments are presented that motivate
further exploration of detailed hybrid bacterial cell models. It has been shown
for the first time that it is possible to simulate a whole-cell whose behavior
depends on its (i) metabolic rates and chemical state, (ii) genome in terms of
expression of various genes, (iii) environment both in terms of direct nutrient
starvation and competitive inhibition leading to starvation, and (iv) genomic
sequence in terms of the locations of genes on the chromosome. The specific
genetic manipulations discussed include knockouts for the pgi and ndk genes,
as well as the variations of the position of a hypothetical gene insert. The
application of phase plane analysis to the MCM has been demonstrated. An
analysis of the MCM'’s response to an increase in arginine, which acts as
a competitive inhibitor of the uptake of other amino acids, has also been
presented. All of these behaviors are exhibited by a single-cell model that
makes reasonable assumptions about cellular biochemistry, reaction rates, gene
expression, and the effect of discrete physiological events on the cell’s behavior.
Therefore, the MCM makes substantial progress toward the computational

systems biology’s aims.

This type of computational experiment could have beneficial applications in
synthetic biology. For example, the J. Craig Venter Institute has been actively
pursuing the goal of synthesizing a cell with a small genome. They successfully
transplanted a complete Mycoplasma mycoides chromosome into a Mycoplasma
capricolum cell whose own genome had been removed (Lartigue et al., 2007).
Next, they constructed a synthetic Mycoplasma genitalium genome (Gibson et al.,
2008). Finally, they took the entire genome from M. mycoides, modified it in yeast

using yeast genetic systems, and then transplanted the modified chromosome
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into M. capricolum (Lartigue et al., 2009). This puts them very close to their
ultimate goal of taking a wholly synthetic chromosome and using it as the
starting genetic information for a new cell line. However, the project has taken
longer than originally projected (Zimmer, 2003), and it is possible that part of
the difficulty lies in finding an appropriate initial condition for the synthetic
cell. The MCM could aid parallel efforts in synthetic biology by providing a

framework to test the viability of cells with particular initial conditions.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The design of a chemically and genomically detailed Minimal Cell Model
(MCM) is a major step in support of synthetic and systems biology. The
overall goals of this research project were (i) to develop more powerful and
flexible computational techniques for analysis of coarse-grained bacterial cell
models, and (ii) to develop a model of a hypothetical bacterium with the
minimum number of genes necessary and sufficient to support sustained
division (i.e. an MCM). These goals were intentionally codependent. More
flexible, object-oriented, and extensible computational techniques allowed the
pursuit of a mathematical modeling framework of novel complexity and detail.
At the same time, as development of the MCM progressed, it became clear that
the underlying modeling methods needed to be updated to accommodate the
expanded lists of genes, chemical species, and reactions. That need motivated

development of new computational methods and modeling structures.

There is an ongoing effort to define a minimal gene set for prokaryotic
life (Gil et al., 2004; Moya et al., 2009); however, there is currently no accepted
method for testing the plausibility a minimal gene set once it is proposed.
This dissertation has shown for the first time that it is possible to test the
plausibility of a minimal gene set using a mathematical model of a whole
chemoheterotrophic bacterial cell. The model cell is able to sustain growth
and replication indefinitely in its optimally supportive culture environment.

The chemically detailed nature of the model allows it to address sophisticated
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experimental questions. Furthermore, as a tool of computational biology, it
lends itself to being a building block for arbitrarily complex systems studies.
For example, many cells could be simulated in parallel in an effort to simulate a

bacterial cell culture, as in Domach and Shuler (1984a).

This dissertation describes the development of the MCM as well as its
applications. Chapter 1 presents important considerations for making a
mathematical model of a minimal cell. The motivation for developing
mathematical models of bacterial cells, and in particular for developing an
MCM, is discussed. Past work in computer modeling of bacteria is presented,
and the concepts of minimal cells and minimal gene sets are introduced. Finally,

the MCM is defined with reference to previous work on the project.

Chapter 2 introduces a sensitivity analysis method for hybrid bacterial
cell models. While this method was ultimately not applied to the MCM, its
development drove the redefinition of the Cornell Escherichia coli model in both
MATLAB® and Systems Biology Markup Language (SBML) formats. The
sensitivity analysis provides a method to identify particular submodules as
prime candidates for delumping in hybrid cell models. A method for stability
analysis is also presented, and it is demonstrated that the E. coli model has
potential (via a Hopf bifurcation) for modulated quasi-periodic oscillations with
a period larger than the doubling time of the cell. What this indicates is that
some features of the model are not constant from generation to generation;
rather, they repeat every two or more generations (Nikolaev et al., 2006). This is
a complex, system-level outcome that is a direct result of the whole-cell hybrid

approach.

Chapter 3 explains an updated version of the Cornell E. coli model that
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links detailed genomic information about the location of dnaA genes and DnaA
binding sites on the chromosome to physiological predictions. This is the first
example of including detailed genomic information in a hybrid bacterial cell
model; it lays the essential computational groundwork for the massive inclusion
of new genes in the MCM. The model also suggests that the concentration of
DNA binding boxes on the chromosome is critical to determining cell growth

and behavior.

Chapter 4 describes the modeling structures used to create the Minimal
Cell Model (MCM) as well as the submodels of metabolism and physiological
processes that drive it. The MCM itself is the most significant outcome of
this dissertation. We show for the first time that it is possible to test the
hypotheses behind a minimal gene set using a chemically detailed, dynamic,
whole-cell modeling approach. An MCM with 241 product-coding genes
(those which produce protein or stable RNA products) is presented. This is
supplementary to the minimal gene set proposed by (Gil et al., 2004). It is
proposed that this set is genomically complete and codes for all the functions
that a minimal chemoheterotrophic bacterium would require for sustained
growth and division. The hybrid cell modeling approach originally used for a
coarse-grained model of E. coli (Nikolaev et al., 2005) has been refined and made
more rigorous for use with the MCM. As computational resources become faster

and less expensive, larger systems should be tractable using these methods.

The variety of computational experiments presented in Chapter 5 motivate
further exploration of detailed hybrid bacterial cell models. In particular, we
show that it is possible to simulate a whole-cell whose behavior depends on

its (i) metabolic rates and chemical state, (ii) genome in terms of expression of
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various genes, (iii) environment both in terms of direct nutrient starvation and
competitive inhibition leading to starvation, and (iv) genomic sequence in terms
of the locations of genes on the chromosome. The specific genetic manipulations
discussed in Chapter 5 include knockouts for the pgi and ndk genes, as well as
the variation of the position of a hypothetical gene insert, ins. The application
of phase plane analysis to the MCM has been demonstrated. An analysis of
the MCM'’s response to an increase in arginine, which acts as a competitive
inhibitor of the uptake of other amino acids, has also been presented. Previous
work proposed that the so-called NDKS activity of the cimk gene is not necessary
for a minimal cell based on the Gil et al. (2004) gene set to survive (Gabaldén
et al., 2007). The results presented here show that the NDKS5 activity is essential,
and that this essentiality is only revealed in the context of a whole-cell analysis
like the MCM . All of these behaviors are exhibited by a single-cell model
that makes reasonable assumptions about cellular biochemistry, reaction rates,
gene expression, and the effect of discrete physiological events on the cell’s
behavior. By connecting biochemistry to physiological behavior, the MCM
makes substantial progress toward the overall aims of computational systems

biology.

The Shuler group has expertise in bacterial cell models that include
the effects of discrete physiological events. These events depend on the
chemical and genomic detail contained in the model, resulting in a clear
connection between genomic sequence and physiological processes including
DNA replication, transcription, translation, and cell division. The metabolic
and transport reactions included in the MCM have been described. Detailed
illustrations of the metabolic pathways in the MCM are included in Appendix C.

The MCM is in balance with respect to redox potential and carbon flow, at least
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to a reasonable approximation. Overall, we consider it to be a physiologically

complete, chemically and genomically detailed representation of a minimal cell.

The model presented here is not the only possible minimal cell model.
There is no evidence that there is one particular minimal cell (Gil et al.,
2004). The current Minimal Cell Model has been established using the (Gil
et al., 2004) minimal gene set. At 0.86 1!, the growth rate (u,) of the MCM
simulated here is faster than one might expect for a minimal cell. However,
it is proposed here that the absolute value of the growth rate is not critical.
In some sense this growth rate is arbitrary. What is more important is the
values of parameters relative to one another within a parameter set (Browning
and Shuler, 2001). This dissertation establishes that it is possible to establish a
minimal cell model using a coarse-grained approach. The MCM is, however,
not unique. Other minimal gene sets could produce viable cells, just as there are
alternate parameter sets that could drive the current model to a steady-state.
It is precisely this ambiguity that motivates the development of computational

methods for discriminating amongst minimal gene sets.

6.2 Recommended Project Extensions

There are significant portions of the new MCM that, while they are chemically
detailed, still lack mechanistic detail, particularly when the physical structure
of the cell must be recognized explicitly. Overall, the chemical detail present
in the MCM will provide the ability to ask questions at a resolution that has,
thus far, not been present in bacterial cell models. Adding mechanistic detail

for a system of interest, however, could increase the value of the model for
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some experimenters. Reasonable extensions to the base MCM presented in this

dissertation are outlined below.

The formation of the cell septum during division in the MCM is catalyzed
by the FtsZ protein, but there is no specific mechanism in the model that
specifies that the septum should form precisely at the midcell. The current
model assumes that septum formation occurs because of the influence of the
FtsZ protein, without providing a mechanism for that behavior. Providing a
mechanism for this split would allow the model to test whether the assumption
of a 50/50 split at division is important. It would be possible to update the
MCM with physical constraints that force this mode of division as in Surovtsev
et al. (2009). The assumption of division at the midcell could also be relaxed,
and the effects of asynchronous division could be investigated as in Domach

and Shuler (1984b).

Another area lacking mechanistic detail is ribosome synthesis. The proposed
minimal gene set includes 50 genes coding for ribosomal proteins (Gil et al.,
2004). Those 50 genes have been included in the MCM, but no model for
ribosome assembly is included, and the process is assumed to occur according
to a Michaelis-Menten like rate. Although self-assembly of the small and large
ribosomal subunits has been studied extensively (Culver, 2003; Talkington et al.,
2005; Rohl and Nierhaus, 1982), there is not currently a mathematical model
for the process that would be amenable to inclusion in the MCM. The protein
and RNA components of the ribosome are all explicitly included in the MCM,
so although ribosome formation is extremely complex, the MCM could be an
ideal platform for testing hypotheses about how the ribosome forms. If an

appropriate ribosomal assembly model were developed, including that model
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in the MCM would be a logical extension to this work.

The genes on the MCM chromosome have been ordered somewhat
arbitrarily. Research has shown that gene order on the chromosome is generally
not conserved across long evolutionary distances in bacteria (Mushegian and
Koonin, 1996; Dandekar et al., 1998; Tamames, 2001). Where gene order is
conserved, it is often between pairs of genes whose protein products physically
interact with each other (Dandekar et al., 1998), a concept which is captured
in spirit by our use of gene clusters. The position of a gene can influence its
expression via the gene dosage, both in nature and in the MCM (Foley and
Shuler, 2010), and it would be beneficial to define a rationale for how genes

should be ordered on a minimal chromosome.

It is desirable to have a glucose-controlled model so that the simulator
can measure how different cellular attributes vary with growth rate. The
MCM does not currently exhibit growth rate control via manipulation of
external concentrations. Rather, the growth rate stays nearly constant as
the glucose concentration is lowered until at some threshold glucose level
the cell undergoes a very sharp transition to cell death. This shows that
the model displays a high sensitivity to changes in its environment. Unlike
real bacteria, a minimal cell has no alternative pathways to start when one
pathway is shut down. In practice it would be necessary to have some
way to control the cell’s growth rate, and this is a good example of why it
is important to draw a distinction between a minimal cell and a synthetic
platform cell for biotechnology (Foley and Shuler, 2010). Cells intended
for biotechnological applications must exhibit growth rate control through

external nutrient manipulation, perhaps by including a stringent response

249



mechanism (Barker et al., 2001; Chatterji and Ojha, 2001). It should be noted
that the stringent response is included in the standard Cornell E. coli model.
Thus, methods to accomplish this extension are available, although more than

the stringent response may be necessary to obtain adequate growth rate control.

It would be beneficial to have a more precise determination of the
initial condition of the MCM using more detailed chemical composition
measurements. The rate constant estimation procedure presented in Section
4.7.3 uses the initial mass of each chemical species in the cell to determine
the required synthesis rates. Therefore, these rate constants are highly
dependent on the initial concentrations of chemicals in the model. As the
initial concentrations are refined, more meaning can be attributed to the rate
constant estimates. Because the MCM is considered to represent a generalized
chemoheterotrophic bacterium, the most useful data for each chemical would
be the mass fraction for all chemical species present in a chemoheterotrophic

bacterial cell.

There are a number of interesting extensions possible for the MCM'’s
DNA synthesis module. The current model for DNA synthesis dictates that
dNTP species are consumed with an average stoichiometry determined by the
sequence of the genome. To our knowledge, this is the first model of a whole-cell
that connects the consumption of DNA precursors to the DNA synthesis rate
using explicit, genomic information. However, the model could go further by
explicitly linking the stoichiometry of DNA synthesis to the fork position, which
would provide a more accurate picture of how dNTPs are consumed over time.
In a parallel update, one could also consider the effect of a more gradual change

the cell’s response to a step-change in gene dosage. Changes in gene dosage
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when chromosome replication copies a gene are currently described with a
step-function. In practice the ability of RNA polymerase to transcribe new gene
copies may increase more gradually, and perhaps not even monotonically. It
would be worthwhile to measure the importance of a particular gene dosage

response in the MCM.

One could also add directionality to the chromosome representation. The
current MCM labels the computer chromosome from position 0.0 at Ori to 1.0 at
the terminus of replication. There is no distinction made as to which side of the
chromosome a gene lies on, or which direction is the sense/antisense direction
of a gene. Including this information would be the first step toward making the

stoichiometry of DNA replication depend on the fork position of the DNA.

There are certain genes from the minimal gene set proposed by Gil et al.
(2004) that are included in the MCM for completeness, but that have no
mathematical connection to rates outside of the production of their own mRNA
and protein products. For example, the genes necessary for DNA repair are
included in the MCM, but their product concentrations do not directly influence
the simulation behavior. By including a mechanism that would directly require
these genes, the fidelity of the MCM to a hypothetical minimal cell could be
increased, and the DNA repair machinery could have an explicit connection to
cell survival. A future model release could include either random or averaged

DNA damage mechanisms via specialized reactions.

There is strong interest in connecting more detailed physical chemistry to
bacterial cell processes using bacterial cell models. The MCM could serve as
a platform for this type of research. For example, the current MCM exists in

an idealized environment with constant temperature. However, it would be
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possible to study how temperature perturbations affect the cell behavior using
Arrhenius expressions (Ataai and Shuler, 1986). Another important question
related to physical chemistry is how the lipid composition of the cell membrane
affects cell physiology. Using the MCM as a basis, a more realistic membrane
with multiple lipid components could be introduced. The lipid composition of
the membrane could be connected mathematically to simulation output using
events. For example, for a lipid membrane with two lipid types, L1 and L2,
the model could have events that are triggered when the ratio L1/L2 passes
some threshold value. Such events could modulate cellular processes such as

diffusion across the membrane.

From a synthetic biology perspective, it would be beneficial to use the
MCM to determine what novel functions are necessary to help a cell survive
challenges in the environment. One could propose a set of mutations to the cell
that impart particular gains of function, and then automatically test to see which
mutations allow the cell to overcome particular challenges. This experiment is
not possible with the version of the MCM described in this dissertation, but the

MCM does act as a step on the way to testing questions related to cell evolution.

The model is currently available in the Systems Biology Markup Language
(SBML) format, which should make it accessible to a wider audience in
computational biology. Currently, we can provide files and simulation tools
for other research groups to work with the MCM. However, it still takes some
technical expertise to download and make use of an SBML file. It would be
advantageous to develop a web-based tool where a researcher could manipulate
the model using the Internet. The primary challenge to making this useful

is that the simulation takes a long time, and web-based tools are not usually

252



efficient for long simulations. An exciting possibility for sharing this model and
generating new results would be to develop a site with a gallery of interesting
results from the MCM, providing motivation for researchers to download and

install the whole simulation package.
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APPENDIX A
MODEL NAMING CONVENTIONS

A.1 Naming Conventions

The supplemental website for the Minimal Cell Model (MCM) will serve
as a repository for all the model simulation code, structure definitions, and
model module definitions (see Appendix I). This Appendix describes naming

conventions used in the code and throughout the dissertation.

The MCM has 408 chemical species defined. In this dissertation, a species is
generally referred to in italic font when referring to its mass, and in regular
font when referring to the chemical itself. The species are usually named
according to commonly accepted biochemical abbreviations, and when there

is no common abbreviation the species is defined in the comments of the code.

Reactions are named according to whether they are considered as synthesis
or degradation reactions. ‘S’ subscripts denote synthetic reactions, while ‘D’
subscripts denote degradation reactions. For example, f6Pg is the synthesis
reaction for f6P (fructose-6P, or fructose-6-phosphate). The degradation
subscript is only applied to degradation of macromolecules (e.g. mRNA or
protein species). In this dissertation, reactions are generally referred to in italic
font when referring to their quantitative rate, and in regular font when referring

to the reaction itself.

The model simulation code automatically creates an assignment rule for the
reaction rate of each reaction so that those rates can be referred to elsewhere

in the model. For example, the rate of tryptophan export, Rr,,, is set as an
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assignment rule so that its value can be used both in calculating tryptophan
transport and in calculating the rate of ATP consumption related to the proton

motive force loss used to import the molecule.

Reaction rate constants, saturation constants, and inhibition constants are all

automatically named in the following patterns:

e For metabolic reactions that do not involve macromolecules, the reaction

rate constants are named vy, where X is the name of the reaction.

e For metabolic reactions involving the synthesis or degradation of mRNA
or protein, reaction rate constants are named kx, where X is the name of

the macromolecule being synthesized or degraded.

e Saturation constants are named K sy.; where Y is the name of the reaction
being activated, and Z is the name of the activating chemical species. For
example, Ksfsp.s.46p is the saturation constant describing the effect of gbp

(glucose-6P, or glucose-6-phosphate) on f6P (fructose-6P) synthesis.

e Inhibition constants are named Kiy., where Y is the name of the reaction
being inhibited, and Z is the name of the inhibiting chemical species. For
example, Kip Gin-Leu-ext 15 the inhibition constant describing the effect of

external leucine on glutamine transport.

A.2 Lumped Chemical Species

As described in Section 4.8.1, the MCM defines a number of lumped chemical
species for convenience. For example, M; describes the total mass of all

protein species in the model. These coarse-grained variables are inspired by the
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previous modeling work in the Shuler group (Domach et al., 1984; Browning
and Shuler, 2001; Castellanos et al., 2004, 2007). Even though the current
model is much more chemically detailed, having access to the concepts of
coarse-grained bacterial species modeling was critical for establishing the roles
of gene clusters and their products. The mRNA and protein species associated
with a particular gene cluster are considered as single mathematical entities in
the MCM. Practically speaking, with the introduction of gene clusters and their
products (Section 4.12) we have coarse-grained the action of particular groups
of enzymes where the model lacks sufficient mechanistic details to distinguish

their roles.
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APPENDIX B
MINIMAL GENE SET USED IN THE MINIMAL CELL MODEL

Our model implements a whole-cell dynamic model of a single cell that
contains the minimal gene set described by Gil et al. (2004). The authors break

their minimal gene set into five major categories:

1. Information Storage and Processing

2. Protein Processing, Folding, and Secretion
3. Cellular Processes

4. Energetic and Intermediate Metabolism

5. Poorly Characterized

The specifics of the minimal gene set used in the MCM, included differences
with that proposed by Gil et al. (2004), are included in Section 4.20. Sequence
information for each gene in the MCM was obtained from the KEGG
database (Kanehisa and Goto, 2000), and Table B.1 summarizes how many genes
came from each source organism. Table 4.8 in Chapter 4 shows a summary of
how many genes fall into particular functional categories in the MCM. Table B.2
lists the genes from the (Gil et al., 2004) gene set that were not included in the

MCM. Finally, a full listing of the genes in the MCM is presented in Table B.3.

261



Table B.1: Distribution of source genomes for finding sequences for the genes
in the minimal gene set. bpu - Bacillus pumilus. bsu - Bacillus subtilis.
chu - Cytophaga hutchinsonii. eco - Escherichia coli. mge - Mycoplasma
genitalium. rsp - Rhodobacter sphaeroides. syc - Synechococcus elongatus.
wbr - Wigglesworthia brevipalpis.

Organism Number of Genes

bpu 1
bsu 10
chu 1
eco 29
mge 162
rSp 1
syc 4
wbr 3

Table B.2: Genes from the minimal gene set proposed by (Gil et al., 2004) that
are excluded from the Minimal Cell Model.

Category Genes

Protein Posttranslational Modification  pepA

Poorly Characterized mes]
ybeY
ycfF
yoaE

yasE
yraL
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APPENDIX C
METABOLIC PATHWAYS IN THE MINIMAL CELL MODEL

The Minimal Cell Model (MCM) contains detailed descriptions of glycolysis,
the pentose phosphate pathway, lipid biosynthesis, nucleotide biosynthesis,
cofactor metabolism, and energy metabolism via fermentation. The Reaction
module is dedicated to defining the reactions of metabolism. The overall
metabolism of the MCM is presented in Section 4.14 and summarized in Figure
4.2. Each of the submodules of metabolism are illustrated in this Appendix
in Figures C.1-C.8. The central metabolic pathways included in the MCM are
based on the minimal gene set proposed by Gil et al. (2004).
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Figure C.1: Transporter assembly in the Minimal Cell Model. The
coarse-grained model for membrane protein insertion in the MCM.
Gene cluster protiansioc includes the genes ffh, ftsY, secA, secE, and

secY.
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pyruvate NADH+H
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Figure C.2: Glycolysis reactions included in the Minimal Cell Model. Solid
arrows represent mass flow, while dashed arrows represent
connections to other metabolic pathways. Labels in italic are
enzymes, defined as follows: Pgi, glucose-6-phosphate isomerase;
Pkfa, 6-phosphfructokinase; FbaA, fructose-1,6-bisphosphate
aldolase; TpiA, triose phosphate isomerase, GapA, glyceraldehyde
3-phosphate dehydrogenase; Pgk, phosphoglycerate kinase; GpmA,
phosphglycerate mutase; Eno, enolase; PykA, pyruvate kinase; Ldh,
lactate dehydrogenase; PTS, phosphotransferase system. Chemical
species abbreviations defined in Table E.1.
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Figure C.3: Pentose phosphate pathway (PPP) reactions included in the
Minimal Cell Model. Solid arrows represent mass flow,
while dashed arrows represent connections to other metabolic
pathways.  Labels in italic are enzymes, defined as follows:
Tkt, transketolase; FbaA, fructose-1,6-bisphosphate aldolase;
GlpX, sedoheptulose-bisphosphatase; Rpe, ribulose-phosphate
3-epimerase; RpiA, ribose 5-phosphate isomerase. Nonstandard
chemical abbreviations are: s-bP sedoheptulose 1,7-bisphosphate;
sedoheptulose 7-phosphate. = The remaining chemical species
abbreviations are defined in Table E.1.
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Figure C.4: Lipid biosynthesis reactions included in the Minimal Cell Model.
Solid arrows represent mass flow, while dashed arrows represent
connections to other metabolic pathways or transport processes.
The FtsZ reaction, which recruits lipid membranes PE to the septum
at the midcell region, is not active until chromosome replication
terminates. Labels in italic are enzymes, defined as follows: FadD,
acyl-CoA synthase; PlsB, sn-glycerol-3-phosphate acyltransferase;
PIsC, 1-acyl-sn-glycerol-3-phosphate acyltransferase;  GpsA,
sn-glycerol-3-phosphate dehydrogenase; CdsA, phosphatidate
cytidyltransferase; PssA, phosphatidylserine synthase; Psd
phosphatidylserine synthase; FtsZ, cytoskeletal cell division
protein. Nonstandard chemical abbreviations are: FA, external
palmitate; pal, palmitoyl CoA; mag, lysophosphatidate; PA,
phosphatidate; CDPd, CDP-diacylglycerol; PS, phosphatidylserine;
PE phosphatidylethanolamine. The remaining chemical species
abbreviations are defined in Table E.1.
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Figure C.5: Ribonucleotide biosynthesis reactions included in the Minimal Cell
Model. Solid arrows represent mass flow, while dashed arrows
represent connections to other metabolic pathways or transport
processes. Blue labels refer to ribonucleotide triphosphates, while
yellow labels refer to deoxyribonucleotide triphosphates. Labels
in italic are enzymes, defined as follows: Adk, adenylate kinase;
NrdEF, ribonucleoside-diphosphate reductase; Ndk, nucleoside
diphosphate kinase; Gmk, guanylate kinase; Tmk, thymidylate
kinase; PyrG, CTP synthase; PrsA, phosphribosylpyrophosphate
synthase. Chemical species abbreviations are defined in Table E.1.
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Figure C.6:
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Deoxyribonucleotide biosynthesis reactions included in the
Minimal Cell Model. Solid arrows represent mass flow, while
dashed arrows represent connections to other metabolic pathways
or transport processes.  Blue labels refer to ribonucleotide
triphosphates, while yellow labels refer to deoxyribonucleotide
triphosphates. Labels in italic are enzymes, defined as follows: Ndk,
nucleoside diphosphate kinase; Tmk, thymidylate kinase; NrdEF,
ribonucleoside-diphosphate reductase; Dcd, dCTP deaminase;
ThyA thymidylate synthase. Chemical species abbreviations are
defined in Table E.1.
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Figure C.7: Cofactor biosynthesis reaction pathways included in the Minimal
Cell Model (1 of 2). Solid arrows represent mass flow, while dashed
arrows represent connections to other metabolic pathways or
transport processes. Blue shading indicates a relationship between
a cofactor and an enzyme or group of enzymes. Labels in italic are
enzymes, defined as follows: YloS, thiamine pyrophosphokinase;
RibF, riboflavin kinase, FMIN adenyltransferase; PdxY, pyridoxal
kinase; NadV, nicotinamide phosphoribosyltransferase; NadR,
adenilyl transferase. Chemical species abbreviations are defined in
Table E.1.
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Figure C.8:

Cofactor biosynthesis reaction pathways included in the Minimal

Cell Model (2 of 2). Solid arrows represent mass flow, while
dashed arrows represent connections to other metabolic pathways
or transport processes. Blue shading indicates a relationship
between a cofactor and an enzyme or group of enzymes. Note
that the dUMP reactant and the dTMP product of the ThyA
reaction are not pictured. Labels in italic are enzymes, defined as
follows: CoaA, pantothenate kinase; Dfp, phosphopantothenate
cysteine ligase, 4’ phospho-pantothenyl-L-cysteine decarboxylase;
CoaD, 4’-phospho-pantetheine  adenyltransferase; CoaE,
dephosphocoenzyme A kinase; MetK, methionine
adenyltransferase; FolA, dihydrofolate reductase; GlyA, glycine
hydroxymethyltransferase; ThyA, thymidylate synthase. Chemical
species abbreviations are defined in Table E.1.
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APPENDIX D
MINIMAL CELL EXTERNAL ENVIRONMENT

A chemically and genomically detailed model of a minimal cell growing in
an optimally supportive culture environment has been created. The Minimal
Cell Model (MCM) is defined to exist in a constant, benign environment with
optimal concentrations of all its required nutrients, pH, temperature, and
dilution of any waste products. The cell concentration in this environment is
considered to be low enough that the nutrients are never significantly diluted.
Alternatively the cell could be considered to be growing in a continuous flow

stirred tank reactor (CFSTR) that is operating at steady-state.

The 38 compounds present in the medium are listed in Tables D.1 and D.2.
Concentrations proposed for defined media for Mycoplasma strain Y (which
is similar to M. mycoides) for glucose; free bases A, G, and U; some cofactor
precursors; and the amino acids were used as the basis for the MCM's external

medium (Rodwell, 1969).

No suitable reference for the concentration of folic acid, fatty acids,
pantothenic acid, or inorganic ions was available, so their initial external

concentrations were set to 1 x 107382, Because the external environment is

mL "’
assumed to be constant, changes in the concentrations of external nutrients
could be compensated for by changes in the rate constants for transport

reactions.
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Table D.1: Extracellular amino acids in the medium compartment. ID is the
string identifier used for each chemical within the model. External
concentrations are set high enough so that the medium is considered
to be optimally supportive. Many of the initial concentrations were
based on a defined media for Mycoplasma Strain Y (Rodwell, 1969).
For Asp, Tyr, and GIn concentrations of 1.0 mM (converted into mass
based concentrations here) have been assumed.

Name ID Concentration (%)
alanine* Alaext 1.8 x 1074
arginine® Argext 1.7 x 1074
asparagine® Asney 1.5 x 107*
aspartate* ASDext 1.3x107%
cystine* CySext 2.4 x 1074
glutamicacid®  Gluext 1.5 x 107*
glutamine* Glnext 1.5 x 10~%
glycine* Glyext 1.5 x 1074
histidine* HiSext 1.6 x 107*
isoleucine* Tleext 1.3x107%
leucine* Leuext 1.3x107*
lysine* LySext 1.5 x 1074
methionine* Metext 3.0 x 1074
phenylalanine® Pheeyt 3.3x 1074
proline* Proext 1.2 x 1074
serine* Serext 2.1x107*
threonine* Thrext 2.4 x 1074
tryptophan* Trpext 4.1 x 1074
tyrosine* Ty Text 1.8 x 107*
valine* Valext, 2.3 x 1071
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Table D.2: Extracellular species present in the medium, aside from amino acids.
See Table D.1 for amino acid concentrations. Species ID is the string
identifier used within the model. External concentrations are set high
enough so that the medium is considered to be optimally supportive.
Many of the initial concentrations were based on a defined media for
Mycoplasma Strain Y (Rodwell, 1969). For inorganic ions and some
precursors of cofactor biosynthesis concentrations of 1.0 £2 have
been assumed.

Species Name Species ID Concentration (£7)
K* Kext 1.0 x 1073
Mg* Mgext 1.0 x 1073
Mn* Mnext 1.0x 1073
Na* Naext 1.0 x 1073
Pi* Piext 1.4 x 1072
adenine* At 1.0 x 107°
fattyacids* FA ot 1.0 x 1073
folatex folateext 1.0 x 1073
glucose* A2t 7.0x 1073
guanine* Gext 1.0 x 107°
hydrogen* Heyt 1.0 x 1073
lactate* lactateext 1.0 x 1074
nicotinamide®  nicotinamidegyt 1.0 x 1076
pantothenate® pantothenateeyt 1.0 x 1073
pyridoxal* pyridoxalext 1.0 x 1073
riboflavin* riboflavineyt 1.0 x 1076
thiamine* thiaminegys 1.0 x 1076
uracil® Uext 1.0 x 107°
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APPENDIX E
INITIAL CONDITIONS FOR THE MINIMAL CELL MODEL

A chemically detailed model of a bacterial cell must have the initial mass
of all its chemical species specified. For many chemical species, even average
cell cycle values are not known, let alone detailed concentration information
as a function of the cell cycle progression. To obtain initial conditions for
the Minimal Cell Model (MCM), we make use of data for groups of chemical
species published for E. coli and make assumptions about how these groups
are subdivided in our hypothetical cell (Neidhardt, 1996). Because there is no
experimental analog for a minimal cell, we propose that using composition data
measured in E. coli is a valid first-approximation because it will have a similar
chemical make-up to other chemoheterotrophic bacteria. The procedure used
to calculate the initial conditions is presented in full in Section 4.5.1. Table E.1

shows the results of applying that procedure in the MCM.
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APPENDIX F
MINIMAL CELL MODEL EVENTS

Events describe instantaneous, discontinuous changes in the state of the
model, and an implementation of events based on SBML is used in the
MCM (Hucka et al., 2008). Because they cause discrete changes in the cell
structure of behavior that occur instantaneously when the cell reaches some
predefined condition, events require special mathematical treatment during a
simulation. Detection of events also requires an algorithm that can detect when
the firing of one event promotes another event to fire simultaneously (Nikolaev

et al., 2006).

Table F.1 lists the 36 events in the Minimal Cell Model (MCM). Most of the
events are associated with monitoring the limiting reagents of reactions with
many substrates (e.g. protein synthesis). In Table F.1 these are identified as

“min-switch” events.
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Table E.1: Discrete physiological events in the Minimal Cell Model. The model
has 36 events. “min-switch” events correspond to switches in limiting
reactants for coarse-grained reactions that have many substrates

(Section 4.18).
Event ID Trigger
DNAinitiation DTlCLGboundto—Ori > Zﬁntthreshold) A (flagmeth - 1)
DNAtermination FOT'kPOS() > 10)

DNApmin—switch—tO—dATP
DNApmin—switch—to—dCTP
DNApmin—switch—to—dGTP
DNApminfswitchftodeTP
Division

DnaBactive

DnaBinactive

HupAactive

HupAinactive
M1pminfswitchftofAla7tRNA
Mlpmin—switch—to—Arg—tRNA
Mlpmin—switch—to—Asn—tRNA
Mlpmin—switch—to—Asp—tRNA
MlpminfswitchftofCysftRNA
MlpminfswitchftofGlnftRNA
Mlpmin—switch—to—Glu—tRNA
Mlpmin—switch—to—Gly—tRNA
Mlpmin—switch—to—HiS—tRNA
M]-pminfswitchftofﬂef‘cRNA
M1pminfswitchft07Leu7tRNA
Mlpmin—switch—to—Lys—tRNA
Mlpmin—switch—to—Met—tRNA
M]-pmin—switch—to—Phe—tRNA
MlpminfswitchftofProftRNA
MlpminfswitchftofSerftRNA
Mlpmin—switch—to—Thr—tRNA
Mlpmin—switch—to—Trp—tRNA
M]-pmin—switch—to—Tyr—tRNA
Mlpminfswitchftof\/al7tRNA
MethState,; 1
RNApmin—switch—to—ATP
RNApmin—switch—to—CTP
RNApmin—switch—to—GTP
RNApminfsWitchftofUTP

(

(

(dATP < DN Apmin)

(dCTP < DN Appin)

(dGTP < DN Appmin)

(dT'TP < DN Appin)

(SEP — septs <0)
(DnaBboundto-Ori > 4.13482 x 1077)
(DnaBboundto—Ori < 4.13482 x 1077)
(HupAboundto—Ori > 5.54452 x 10_7)
(HupApoundto-ori < 5.54452 x 1077)
(Alagrna < M1pmin)
(ArgtRNA < Mlpmzn)
(Asnipna < M1ppin)
(Aspirna < M1pmin)
(Cystrna < M1ppin)
(Glngpna < M1ppin)
(GlutRNA < Mlpmzn)
(Glytrna < M1ppin)
(Hisipna < M1pmin)
(Ilespna < M1pmin)
(Leutrna < M1pmin)
(LystRNA < Mlpmm)
(Metipna < M1pmin)
(Phetrna < M1pmin)
(Protrya < M1pmin)
(SeTtRNA < Mlpmzn)
(Thripna < M1pmin)
(Trptrva < M1ppmin)
(TyTtRNA < Mlpmzn)
(Valipna < M1pmin)
(MethState > 1)
(ATP < RN Apmin)
(CTP < RN Appin)
(GTP < RN Apyin)
(UTP < RN Apumin)
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APPENDIX G
SENSITIVITY AND CONTROL ANALYSIS OF PERIODICALLY FORCED
REACTION NETWORKS USING THE GREEN’S FUNCTION METHOD

The contents of this appendix are reproduced with permission from the
Journal of Theoretical Biology'. This appendix contains the abstract of the paper.

The full original paper was published by Nikolaev, Atlas, and Shuler (2007).

A general sensitivity and control analysis of periodically forced reaction
networks with respect to small perturbations in arbitrary networks parameters
and forcing frequency is presented using the Greens function method. A
well-known property of sensitivity coefficients for periodic processes in
dynamic systems is that the coefficients generally become unbounded as time
tends to infinity. To circumvent the conceptual obstacle, a relative phase
or fractional time variable is introduced so that when evaluated in terms of
the new time variable, the periodic sensitivity coefficients can be calculated.
By employing the Greens function method, the sensitivity coefficients can be
defined using integral control operators that relate small perturbations in the
networks parameters and forcing frequency to the variations in the metabolite
concentrations and fluxes. The properties of such operators do not depend on
a particular parameter-perturbation and are described by the summation and
connectivity relationships within a control-matrix operator equation. The aim of
the paper is to derive a general control-matrix operator equation for periodically
forced reaction networks. To demonstrate the general method, the two limiting

cases of high and low frequency are considered and an important case of

INikolaev, E.V., Atlas, J.C., and Shuler, M.L., 2007, “Sensitivity and control analysis of
periodically forced reaction networks using the Greens function method”, Journal of Theoretical
Biology, vol. 247, pp. 442-461.
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the simultaneous modulation of enzyme activities and external frequency is
discussed. The developed framework is also illustrated by the calculation of
the sensitivity and control coefficients for a simple two reaction pathway, where
enzyme activities enter reaction rates linearly and specifically. We find that
external force adds an important complicating factor as metabolic control can
be continuously shifted between different groups of enzymes depending on the
oscillatory phase. This shift can be controlled to some extent by the magnitude

of the forcing frequency.
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APPENDIX H
SUPPLEMENT TO “INCORPORATING GENOME-WIDE DNA
SEQUENCE INFORMATION INTO A DYNAMIC WHOLE-CELL MODEL
OF ESCHERICHIA COLI: APPLICATION TO DNA REPLICATION”

The contents of this appendix are reproduced with permission from IET
Systems Biology'. The information presented here is supplementary to Chapter

3 of this dissertation.

H.1 Dynamical Changes of DnaA-Binding Boxes Along the

Replicating Chromosome

To obtain mathematical expressions for the number of DnaA-binding boxes
described by formulas (3.3) - (3.5) in the main text, we consider first the simplest
case, where a circular chromosome has only one moving Fork,; with fractional
position z; as shown in Figure 3.4. Let y; = 1 —x, v, is the fractional distance of
Fork, from the DNA terminus. Then the total number of the DnaA-binding
boxes with the cumulative number distribution function F(y) along Neurom

synchronously replicating chromosomes can be calculated using the formulas

(H.1) - (H.2).

S = Nuwrom - [F(1) + ASY] (H.1)

! Atlas, J.C., Nikolaev, E.V., and Shuler, M.L., September 2008, “Incorporating Genome-Wide
DNA Sequence Information into a Dynamic Whole-Cell Model of Escherichia coli: Application
to DNA Replication”, IET Systems Biology, vol. 2, no. 5, pp. 369-382, (©The Institution of
Engineering and Technology 2008.
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AS' = F(1) — F(y) (H2)

Here F'(1) is the total number of the DnaA boxes on the leading strand (see
the main text), and AS! is the number of the DnaA boxes on the one newly
synthesized lagging strand as shown in Figure 3.4(a). Using equation (H.2) in
(H.1), we obtain (H.3). Using (3.2) from the main text with the omitted indices
in (H.3), we can obtain (H.4).

S = Nch'rom : [2F<1) - F(yl)] (H3)

S = Nenrom - [2(a+b) —a-y; — b~ y%] (H.4)

After simple algebraic manipulations, (H.4) can be transformed to (3.3) -
(3.5), as in (H.5) at y» = y3 = 1 corresponding to the absent Fork, and Fork;
. To check this we can use 3, = y3 = 1 in formulas (3.3) - (3.5) of the main text,

leading to equation (H.5) which is equivalent to (H.4).

S:Nchrom'[2(a+b)_a'y1_b'y%]

chrom * [a (2_3/1> +0b- (2_y%)]

= Nehrom * [CL ’ (yl + 2<1 - yl)) +0b- (y% + 2(1 - y%))] (HS)

The cases with moving forks Fork, and Fork; can be considered in a similar
way. Indeed, in the case when Fork, and Fork, are active, equation (H.1) can

be rewritten in the form of equations (H.6) and (H.7).
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S = Neprom - [F(1) + AST +2AS?] (H.6)

AS? = F(1) — F(y) (H.7)

Here Niyom, F(1), and AS! are defined as in (H.1) and (H.2), v, is the
fractional distance of Fork, from the terminus of the replicating chromosome.
2AS5? is the total number of the DnaA binding boxes within the two newly
synthesized lagging strands as shown in Figure 3.4(b). Using (H.2) and (H.7)
in (H.6), we obtain (H.8).

S = Nchrom ' [4F(1> - F(yl) - 2F<y2>] (H8)

Using (3.2) from the main text with the omitted indices in (H.8), we can

obtain (H.9)

S - Nchrom : [4(& + b) - ((l ! + b- y%) - 2(@ * Y2 + b- y%)] (Hg)

Similarly to (H.5), equation (H.9) can be rewritten in a form equivalent to

(3.3) - (3.5) of the main text with y; = 1 corresponding to Forks being absent.

Finally, when all three forks, Fork,, Fork,, and Forks are active as shown in

Figure 3.4(c), we obtain (H.10) and (H.11).

S = Neprom - [F(1) + AS' +2A5? + 4AS7] (H.10)
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AS? = F(1) — F(ys3) (H.11)

Here y; is the fractional distance of Forks from the terminus and 4AS3 is
the total number of the DnaA binding boxes within the four newly synthesized
lagging strands as in Figure 3.4(c). Using (H.2), (H.7) and (H.11) in (H.10), we
obtain (H.12).

S = Nenrom - [8F (1) — F(y1) — 2F(y2) — 4F (y3)] (H.12)

Using (3.2) from the main text with the omitted indices in (H.12), we

additionally obtain (H.13).

S = Netrom - [8(a+b) = (a-y1 +b-y}) —2(a-y2 +b-y3) —4(a-ys +b-y3)] (H.13)

It can be verified that (H.13) is equivalent to (3.3) - (3.5).

H.2 Ordered and Sequential Binding of DnaA-ATP Molecules

to oriC
To calculate the discrete events corresponding to the formation of the replicon at
oriC and then its transitions between different states, we assume that about 28

DnaA-ATP molecules should bind to the replicon to begin the DNA replication

process. Because there are four functional boxes in the oriC, Ry, Ry, R3, and
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R4 (Margulies and Kaguni, 1996), there should presumably be seven ordered and
sequential states that the replicon should pass through before all 28 DnaA-ATP
molecules binds to the active replicon at oriC. These seven ordered and
sequential states were experimentally observed for E. coli (Crooke et al., 1992;
Margulies and Kaguni, 1996). Therefore in our approximation, we can assume
that in average four DnaA-ATP molecules can bind to the replicon before its
transition to the next state. It is also experimentally observed that DnaA-ATP
molecules preferentially bind to the oriC' flanking functional boxes R; and R4
with higher affinity relative to the central oriC' functional boxes R, and Rs.
Therefore we can additionally postulate that there should presumably be a
cooperative effect in the sense that the more DnaA-ATP molecules are titrated
by the high-affinity H-boxes outside oriC (i.e. the less H-boxes are available
outside oriC), the more chance there is that next four DnaA-ATP molecules will
bind to the replicon at oriC. Let Sp,.4 be the number of H-boxes bound outside
oriC at time ¢, and let Sy be the total number of all H-boxes on the replicating
chromosome at time ¢. We denote by Ny the number of the functional boxes in

oriC, Ng = 4. Recall also that the binomial coefficient is defined as

where n! is the factorial of n. To model the chance of the formation of the
replicon at the “bare” oriC' at time ¢, we assume that four (i.e. Np) free
DnaA-ATP molecules can bind to Sy boxes giving rise to (ff; ) total possibilities.
Additionally, we assume that four (i.e. Np) of all bound H-boxes can be in oriC
at time ¢. This allows us to postulate the probability of the replicon formation

corresponding to the case when four DnaA-ATP molecules bind to the bare oriC
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at time ¢,

SDnaA SH
() (3)

Recall that I'(n+1) = n!, when n is an integer (W.H. et al., 1988). Then (H.14)

can be rewritten in the equivalent form (H.15).

['(Spnaa + 1) ‘ ['(Sy — Np+1)
['(Spraa — N+ 1) LSy +1)

P ~ (H.15)

which is more convenient for computations rather than direct calculation of
factorials. We further assume that the replicon is formed at oriC' when the
estimated P is equal to the actual uniform probability (i.e. P,.ic) of the replicon
“transition” defined in the main text (i.e., mathematically, the when algebraic

event condition P} = P, is met).

To model the discrete transitions of the formed replicon between different
states at oriC', we additionally assume that S pnaa is the number of the bound
H-boxes outside the formed replicon at time ¢ and Sy is the number of free
H-boxes. Similarly to (H.14), we can postulate the probability of the replicon

transition between different states R, R € {1,...,7}, at oriC at time ¢

gDnaA §H
ne () () 19

Using identity I'(n + 1) = n! , (H.16) can be rewritten in a more

computationally convenient form (H.17)
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[(Sppaa+1)  T(Sg—Np+1)

P~ —— _
" I(Spnas — Ng + 1) I'(Sy+1)

(H.17)

Again, we assume that the replicon transition happens when the estimated
P, is equal to the actual uniform probability (i.e. P,.;c) of the replicon transition
as discussed in the main text (i.e., mathematically, the corresponding algebraic

discrete event condition is P, = P,,;c).
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APPENDIX I
SUPPLEMENTAL WEBSITE

A projected long-term impact of this dissertation is to make the Minimal
Cell Model (MCM) available to a wide audience. The model is available in the
Systems Biology Markup Language (SBML) (Hucka et al., 2003, 2008) with
model a simulator called SloppyCell available in Python (Gutenkunst et al.,
2007a). The MCM makes heavy use of SloppyCell’s simulation features, but
it was not possible to use the parameter estimation and sensitivity analysis
teatures of SloppyCell with the MCM because of its large size. Having the MCM
available in SBML, however, means that a researcher could potentially simulate

the system using any simulation package that accepts SBML input.

To establish a complete record of the work presented here, we have
registered a supplemental website for the MCM project at http://
minimalcell.bme.cornell.edu that will include all the computer code

used in this dissertation.

The program code will be available in a distribution archive that contains

the following top-level directories:

e Data contains the Microsoft Access 2003 database that defines all
the compartments, species, and genes in the MCM (mcm_db.mdb).
It also includes data related to calculating the initial conditions for
the model (InitialConditions.py) and function definitions for
importing information from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto, 2000) into the Access database.

e Documentation contains files related to creating the automatically
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generated model documentation. There is a documentation template
file (documentation_template.tex) which contains the base structure
for generating the model documents. To actually generate the model

documents, use the script quick_documents.py in the Run directory.

KEGG contains a file, KEGGInterface.py which defines functions for
making a connection to the KEGG database online using the Simple Object

Access Protocol (SOAP).

The lpsolve directory contains a wrapper class for the Ipsolve open
source mix-ed integer linear program software, used under the LGPL
(Berkelaar et al., 2010). Ipsolve is used to estimate rate constants for
the MCM. Only the wrapper class is included in the project distribution.
The software is not included with the MCM distribution, and it must
be installed separately. lpsolve is available from http://lpsolve.

sourceforge.net/.

MCM_base defines the modules, or sub-models, of the MCM. For
example, Compartments.py, Reactions.py, and Species.py
modules instantiate data structures related to the compartments,

reactions, and species used in the model.

MCM_structures contains all the class definitions for modeling
structures used in the MCM, such as Reactions and Parameters. These

modeling structures are described in Chapter 4.

Run is where all scripts related to model simulation and experimentation
are stored. Each file has a comment preamble that explains its purpose.
Those just starting with the MCM should try to run the run_base.py

and run_base_analysis.py scripts.
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e Sequence contains functions for manipulating gene and protein
sequences. For example, it includes functions for automatically converting

an amino acid sequence to a protein synthesis stoichiometry.

e Testing contains a Python testing suite built using the unittest
framework provided in Python. The format of this testing suite was
modeled after the testing suite used in SloppyCell (Gutenkunst et al.,
2007a).

The MCM code makes heavy use of SloppyCell, a Python software package
for simulation and analysis of biomolecular networks (Gutenkunst et al., 2007a).
SloppyCell has been applied to several biological systems of interest (Waterfall
et al., 2006; Gutenkunst et al., 2007b,c). Significant updates have been made
to SloppyCell as part of the current research to adapt it to simulating a
model of this size and complexity. Support was added for several previously
unsupported features of the SBML specification, including algebraic rules,
model constraints, and event trigger functions with logical expressions. The
current generation of the MCM has only been tested on Windows XP using
SloppyCell built directly from the Concurrent Version System (CVS) source. The
SloppyCell source is availableat http://sloppycell.sourceforge.net/,
and the MCM website will include up-to-date instructions for simulating the
MCM reaction network to work with SloppyCell on Windows XP. The current
version of those instructions are summarized in Section I.1. Sections 1.2 and 1.3
show short examples of usage for the MCM software. More extensive examples
will be posted at the MCM website at http://minimalcellmodel .bme.

cornell.edu.
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I.1 Installing the Minimal Cell Model on Windows XP

Installing and simulating the MCM software has several requirements. We
have only worked with the MCM on Windows XP, but because Python
is platform-independent it should be possible to install the software under
alternate operating systems. Some features, however, do require Windows (e.g.,
reconstructing the model from the start using the Microsoft Access database
of compartments, genes, and chemical species). The following steps outline
the procedure that we currently use to install SloppyCell and the MCM under
Windows XP.

1. Install Python (version 2.6.4 recommended)

e Add the root directory of the python installation to the PATH

environment variable (e.g. C:\Python26).
2. Install 1ibSBML.

e Use 1ibSBML 4.0 compiled with vc90 or later.

e Set the PYTHONPATH environment variable to the Python bindings

directory of the 1ibSBML installation.

3. Install scipy and numpy. Make sure the installation matches the version

of Python installed.

e Use scipy-0.7.1 or later.
e Use numpy-1.3.0 or later.

e Note: scipy 0.7.1and numpy 1.4.0 areincompatible.

4. Install matplotlib-0. 99 or later for the appropriate version of Python.
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. Install MinGW, making sure to include the g77, g++, and MinGWMake

compiler apps when prompted.
e add C:\MinGW\bin to the PATH environment variable.

. If SloppyCell will be installed from the CVS source of the latest version,

install TortoiseCVS client.

e configure an SSH key using the instructionsathttp://sourceforge.

net/apps/trac/sourceforge/wiki/SSH%20keys.

e configure TortoiseCVS the first time you do a checkout using the
instructionsathttp://sourceforge.net/apps/trac/sourceforge/

wiki/TortoiseCVS%20instructions.
. Install the Microsoft .NET framework (this will be required for the Visual
C++ compilers).

. Install Microsoft Visual C++ Express version. This is the C compiler we

use for building SloppyCell.

. Install SloppyCell from http://sloppycell.sourceforge.net/.

e The SloppyCell website has an installer available for Win32
platforms.

e If you download the source from the CVS server, unzip the
downloaded files into the site-packages directly of your Python
installation.

e at the command prompt in the SloppyCell directory, run

"python setup.py build -cmsvc install

——install—lib=..\.W
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e To test the SloppyCell installation, navigate to the SloppyCell
\Testing directory and execute the test.py script from the

command line.

10. Install pyodbc to be able to connect to the Microsoft Access database of
compartments, genes, and chemical species (this is required to regenerate

the MCM rather than using a precompiled SBML file).

11. Install 1psolve 5.5 (http://lpsolve.sourceforge.net/5.5/)

so that the system can calculate rate constants (Berkelaar et al., 2010).

e You may need to copy the lpsolve55.dll file from the

extra\Python directory to somewhere in the system path.

e Ensure that the 1psolve directory was included in your distribution

of the MCM.

12. (Optional) Install Graphviz (http://www.graphviz.org/), and add
the Graphviz bin directory to PATH environment variable so that it can be

called from command line (e.g. C:\Program Files\Graphviz2.27\bin).
13. (Optional) Install SoapPy for KEGG Application Programming Interface

(API) access.

e This also requires the Python fpconst module (http://pypi.
python.org/pypi/fpconst/0.7.2). The KEGG wrapper is

known to work with fpconst 0.7.2.

e To get fpconst working, you may need to move “from future”

imports in Client.py, Types.py, and Server.py.

14. (Optional) Install Processing 1.0.9 or later for cell growth visualization

(http://processing.orgq).
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15. (Optional) Install QuickTime to be able to save cell growth movies

generated by Processing (http://www.apple.com/quicktime/).

16. (Optional) Install Circos to the C:\Apps\Circos directory so that the
circos perl scriptis at C: \Apps\Circos\bin\circos (http://mkweb.

bcgsc.ca/circos/).

e Requires Perl 5.8x or newer. ActivePerl 5.10 is recommended (http:

//www.activestate.com/activeperl/).

e PERL Packages installed from ActivePerl’s package manager:

Clone

— Config::General
— Math::Bezier

— Math: :Round

— Math: :VecStat

— Params::Validate
— Readonly

— Set::IntSpan

— Statistics::Descriptive

17. Obtain the MCM distribution archive from http://minimalcellmodel.

bme . cornell.edu. Unpack the archive into some local directory.

e To quickly see if your installation is working, navigate to the
MCM\Run directory, and from the command line execute the
run_base.py and run_base_analysis.py scripts. run_base.py
just initializes a Cell object. run_base_analysis.py initializes the

cell object and performs a simulation from the default condition,
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and then saves output from the simulation to the MCM\Run\figs

directory.

e More extensive tests of the MCM installation are in the MCM\Test ing
directory. To execute the Python tests, navigate to the MCM\Testing
directory and run the test.py file from the command line. Note:
Depending on your computer hardware, running the full test suite

may take over 24 hours.

I.2 Simulation and Integration

The following example shows how to load and simulate the default MCM.
The model cell object is loaded and initialized, and then a SloppyCell reaction
network is generated. This reaction network is integrated in time. This
sort of integration is the basis for all the computational experiments that are
performed with the MCM, so understanding it is essential to progressing to

more complicated examples.

—_

HHH IR
#

# This listing demonstrates how to load the Minimal Cell

# Model "cell’ object and then do a time integration of the
# reaction network using SloppyCell.

#

#H#H I

O 0 N O O ke WD

# The cell object is defeined in Components.py

—
o

from MCM_ base. Components import =
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# The ReactionNetworks directory of SloppyCell contains

# modules that handle reaction networks and time—integration

from SloppyCell.ReactionNetworks import x

# For the new cell , we must calculate reaction rate
# constants

cell.calculate_initial_rates ()

# We also set constraints on the cell so that SloppyCell
# will know that if any species obtains a mass < 0 that
# the model simulation has become invalid.

cell .set_constraints ()

# Construct a SloppyCell network.
cell.construct_ss_net ()

net = cell.net

# Setting the network parameters to being non—optimizable
# will speed network compilation. Similarly , we disabale
# the compilation of the network’s derivative functions.
for par in net.GetParameters (). keys():
net.set_var_optimizable (par, is_optimizable=False)

net.disable_deriv_funcs ()

# compiling the network is the final step before
# integration

net.compile ()

# We define a time range for integration , and then call
# the integrate function of SloppyCell’s 'Dynamics’ module

times = scipy.linspace (0, 10, 500)
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43 | traj = Dynamics.integrate(net, times, fill_traj=False,

44 return_derivs=True,
45 redirect_msgs=False)
46

47 |# The traj variable contains the results of the simulation,

48 |# which can be plotted using SloppyCell or analyzed as the

49 |# current experiment demands.

1.3 Computational Experiments

The Experiment class provides structures and functions to assist in simulating
the model over a range of parameter values. This is useful when, for example,
one wants to demonstrate the effect of changing a particular rate constant on the
model’s overall behavior. Each Experiment receives as input a list of conditions
that will be tested when the Experiment is ‘run’. The MCM website will list
more complicated examples, but this listing shows a basic experiment where all

the rate constants in the model are scaled simultaneously by a range of factors.

—_

HHH AR
#

# This listing demonstrates how to run a simple

# computational experiment using the Minimal Cell Model.

#

H AR

O 0 NN N O ke WD

# The cell object is defeined in Components.py

—_
o

from MCM_ base.Components import x*
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# The following imports load functions and classes related
# to experiments
from MCM_structures. Experiment_.mod import x

from MCM._structures.event_manip import x

# We import the SloppyCell integration modules and rename
# the module as SRN for convenience.

import SloppyCell.ReactionNetworks as SRN

# Initial cell preperation and reaction network generation
cell.calculate_initial_rates ()

cell .set_constraints ()

cell.construct_ss_net ()

net = cell.net

# We create a copy of the reaction network so that the
# original is not modified during the experiment

net_exper = net.copy()

B

An Experiment object accepts a list of conditions
# that the Experiment what parameter values to use for

# each data point or trial.

# This experiments varies all of the reaction rate constants
# in the model (vms) by some scale. We selecte a range of 20

# scale values evenly spaced on a log scale.

scales = scipy.logspace(scipy.logl0(0.01),scipy.logl0(10), 20)

# Each entry in the condition list will be a dictionary that

# maps parameter names to values
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

conditions = []

for scale in scales:
scale_condition = {}
for r in cell.reactions.values ():
(vm, val) = r.v.m
scale_condition[vin] = valxscale

conditions .append(scale_condition)

# Chose a default integration time. The Experiment object
# will automatically increase the integration time if

# necessary to find a steady—state for the simulation.
times = scipy.linspace(0,15,2)

exper = Experiment(’vm_scaling_experiment’, cell,

net_exper, conditions, times)

# Run the experiment for all the conditions specified

exper.run()

# Plot results from the experiment
exper.plot_single_values ('mug’, plot_type="division’,
vs="scaled’, xs_alt=scales,

xlabel_alt =’"scalefactor’)

# Save the results of the experiment. This is useful

# because running the entire experiment can take a long

# time. Saving the results can allow us to quickly revisit
# old experiments without starting over.

exper.save( %s.pickle "%(exper.id))
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